Previous |  Up |  Next

Article

Title: On the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum (English)
Author: Du, Yongguang
Author: Liu, Huaning
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 63
Issue: 2
Year: 2013
Pages: 461-473
Summary lang: English
.
Category: math
.
Summary: The main purpose of the paper is to study, using the analytic method and the property of the Ramanujan's sum, the computational problem of the mean value of the mixed exponential sums with Dirichlet characters and general Gauss sum. For integers $m$, $ n$, $ k$, $ q$, with $k\geq {1}$ and $q\geq {3}$, and Dirichlet characters $\chi $, $\bar {\chi }$ modulo $q$ we define a mixed exponential sum $$ C(m,n;k;\chi ;\bar {\chi };q)= \sum \limits _{a=1}^{q}{\mkern -4mu\vrule width0pt height1em}' \chi (a)G_{k}(a,\bar {\chi })e \Big (\frac {ma^{k}+n\overline {a^{k}}}{q}\Big ), $$ with Dirichlet character $\chi $ and general Gauss sum $G_{k}(a,\bar {\chi })$ as coefficient, where $\sum \nolimits '$ denotes the summation over all $a$ such that $(a,q)=1$, $a\bar {a}\equiv {1}\mod {q}$ and $e(y)={\rm e}^{2\pi {\rm i} y}$. We mean value of $$ \sum _{m}\sum _{\chi }\sum _{\bar {\chi }}|C(m,n;k;\chi ;\bar {\chi };q)|^{4}, $$ and give an exact computational formula for it. (English)
Keyword: mixed exponential sum
Keyword: mean value
Keyword: Dirichlet character
Keyword: general Gauss sum
Keyword: computational formula
MSC: 11L03
MSC: 11L05
idZBL: Zbl 06236424
idMR: MR3073971
DOI: 10.1007/s10587-013-0030-4
.
Date available: 2013-07-18T15:01:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143325
.
Reference: [1] Apostol, T. M.: Introduction to Analytic Number Theory.Undergraduate Texts in Mathematics Springer, New York (1976). Zbl 0335.10001, MR 0434929
Reference: [2] Calderón, C., Velasco, M. J. De, Zarate, M. J.: An explicit formula for the fourth moment of certain exponential sums.Acta Math. Hung. 130 (2011), 203-222. Zbl 1240.11090, MR 2765565, 10.1007/s10474-010-0043-5
Reference: [3] Chalk, J. H. H., Smith, R. A.: On Bombieri's estimate for exponential sums.Acta Arith. 18 (1971), 191-212. Zbl 0219.12021, MR 0309880, 10.4064/aa-18-1-191-212
Reference: [4] Davenport, H.: On certain exponential sums.J. Reine Angew. Math. 169 (1933), 158-176. Zbl 0006.29501
Reference: [5] Estermann, T.: On Kloosterman's sum.Mathematika, Lond. 8 (1961), 83-86. Zbl 0114.26302, MR 0126420, 10.1112/S0025579300002187
Reference: [6] Evans, R.: Seventh power moments of Kloosterman sums.Isr. J. Math. 175 (2010), 349-362. Zbl 1242.11059, MR 2607549, 10.1007/s11856-010-0014-0
Reference: [7] Gong, K., Wan, D. Q.: Power moments of Kloosterman sums..
Reference: [8] Kanemitsu, S., Tanigawa, Y., Yi, Y., Zhang, W. P.: On general Kloosterman sums.Ann. Univ. Sci. Budap. Rolondo Eötvös, Sect. Comput. 22 (2003), 151-160. Zbl 1108.11059, MR 2094014
Reference: [9] Kloosterman, H. D.: On the representation of numbers in the form $ax^{2}+by^{2}+cz^{2}+dt^{2}$.Acta Math. 49 (1927), 407-464. MR 1555249, 10.1007/BF02564120
Reference: [10] Liu, H.: Mean value of mixed exponential sums.Proc. Am. Math. Soc. 136 (2008), 1193-1203. Zbl 1145.11063, MR 2367093, 10.1090/S0002-9939-07-09075-2
Reference: [11] Liu, H.: Mean value of some exponential sums and applications to Kloosterman sums.J. Math. Anal. Appl. 361 (2010), 205-223. MR 2567295, 10.1016/j.jmaa.2009.08.064
Reference: [12] Liu, H., Zhang, W.: On the general $k$-th Kloosterman sums and its fourth power mean.Chin. Ann. Math., Ser. B 25 (2004), 97-102. Zbl 1048.11065, MR 2033954, 10.1142/S0252959904000093
Reference: [13] Wang, T., Zhang, W. P.: On the fourth and sixth power mean of the mixed exponential sums.Sci. China Math. 41 (2011), 1-6.
Reference: [14] Xu, Z., Zhang, T., Zhang, W.: On the mean value of the two-term exponential sums with Dirichlet characters.J. Number Theory 123 (2007), 352-362. Zbl 1197.11103, MR 2300819, 10.1016/j.jnt.2006.07.005
Reference: [15] Ye, Y.: Estimation of exponential sums of polynomials of higher degrees II.Acta Arith. 93 (2000), 221-235. Zbl 0953.11028, MR 1759916, 10.4064/aa-93-3-221-235
Reference: [16] Zhang, W.: The fourth and sixth power mean of the classical Kloosterman sums.J. Number Theory 131 (2011), 228-238. Zbl 1218.11074, MR 2736853, 10.1016/j.jnt.2010.08.008
Reference: [17] Zhang, W.: On the general Kloosterman sum and its fourth power mean.J. Number Theory 104 (2004), 156-161. Zbl 1039.11052, MR 2021631, 10.1016/S0022-314X(03)00154-9
Reference: [18] Zhang, W., Yi, Y., He, X.: On the $2k$-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums.J. Number Theory 84 (2000), 199-213. Zbl 0958.11061, MR 1795790, 10.1006/jnth.2000.2515
.

Files

Files Size Format View
CzechMathJ_63-2013-2_12.pdf 263.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo