Previous |  Up |  Next

Article

Title: Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials (English)
Author: Breit, Dominic
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 54
Issue: 4
Year: 2013
Pages: 493-508
Summary lang: English
.
Category: math
.
Summary: We discuss regularity results concerning local minimizers $u: \mathbb R^n\supset \Omega\rightarrow\mathbb R^n$ of variational integrals like \begin{align*} \int_{\Omega}\{F(\cdot ,\varepsilon (w))-f\cdot w\}\,dx \end{align*} defined on energy classes of solenoidal fields. For the potential $F$ we assume a $(p,q)$-elliptic growth condition. In the situation without $x$-dependence it is known that minimizers are of class $C^{1,\alpha }$ on an open subset $\Omega_{0}$ of $\Omega$ with full measure if $q< p\,\frac{n+2}{n}$ (for $n=2$ we have $\Omega_{0}=\Omega$). In this article we extend this to the case of nonautonomous integrands. Of course our result extends to weak solutions of the corresponding nonlinear Stokes type system. (English)
Keyword: Stokes problem
Keyword: generalized Newtonian fluids
Keyword: regularity
Keyword: nonautonomous functionals
Keyword: local minimizer
MSC: 35B65
MSC: 35J50
MSC: 35Q35
MSC: 49N60
MSC: 76D07
MSC: 76M30
idZBL: Zbl 06373980
idMR: MR3125072
.
Date available: 2013-10-01T21:13:03Z
Last updated: 2016-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/143472
.
Reference: [AM] Acerbi E., Mingione G.: Regularity results for stationary electro-rheological fluids.Arch. Rat. Mech. Anal 164 (2002), 213–259. Zbl 1038.76058, MR 1930392, 10.1007/s00205-002-0208-7
Reference: [Br1] Breit D.: Regularitätssätze für Variationsprobleme mit anisotropen Wachstumsbedingungen.PhD thesis, Saarland University, 2009.
Reference: [Br2] Breit D.: New regularity theorems for non-autonomous variational integrals with $(p,q)$-growth.Calc. Var. 44 (2012), 101–129. Zbl 1252.49060, MR 2898773, 10.1007/s00526-011-0428-5
Reference: [BF1] Bildhauer M., Fuchs M.: Variants of the Stokes problem: the case of anisotropic potentials.J. Math. Fluid Mech. 5 (2003), 364–402. Zbl 1072.76019, MR 2004292, 10.1007/s00021-003-0072-8
Reference: [BF2] Bildhauer M., Fuchs M.: $C^{1,\alpha}$-solutions to non-autonomous anisotropic variational problems.Calc. Var. 24 (2005), no. 3, 309–340. Zbl 1101.49029, MR 2174429, 10.1007/s00526-005-0327-8
Reference: [BF3] Bildhauer M., Fuchs M.: Partial regularity for variational integrals with $(s,\mu,q)$-growth.Calc. Var. 13 (2001), 537–560. Zbl 1018.49026, MR 1867941, 10.1007/s005260100090
Reference: [BF5] Bildhauer M., Fuchs M.: A regularity result for stationary electrorheological fluids in two dimensions.Math. Methods Appl. Sci. 27 (2004), no. 13, 1607–1617. Zbl 1058.76073, MR 2077446, 10.1002/mma.527
Reference: [BFZ] Bildhauer M., Fuchs M., Zhong X.: A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids.Manuscripta Math. 116 (2005), no. 2, 135–156. Zbl 1116.49018, MR 2122416, 10.1007/s00229-004-0523-4
Reference: [CGM] Cupini G., Guidorzi M., Mascolo E.: Regularity of minimizers of vectorial integrals with $p-q$ growth.Nonlinear Anal. 54 (2003), no. 4, 591-616. Zbl 1027.49032, MR 1983438, 10.1016/S0362-546X(03)00087-7
Reference: [DER] Diening L., Ettwein F., Růžička M.: $C^{1,\alpha}$-regularity for electrorheological fluids in two dimensions.Nonlinear Differential Equations Appl. 14 (2007), no. 1–2, 207–217. Zbl 1132.76301, MR 2346460, 10.1007/s00030-007-5026-z
Reference: [ELM1] Esposito L., Leonetti F., G. Mingione G.: Sharp regularity for functionals with $(p,q)$-growth.J. Differential Equations 204 (2004), 5–55. Zbl 1072.49024, MR 2076158, 10.1016/S0022-0396(04)00208-6
Reference: [ELM2] Esposito L., Leonetti F., Mingione G.: Regularity for minimizers of irregular integrals with $(p,q)$-growth.Forum Mathematicum 14 (2002), 245–272. MR 1880913, 10.1515/form.2002.011
Reference: [Fu] Fuchs M.: On quasistatic non-Newtonian fluids with power law.Math. Methods Appl. Sci. 19 (1996), 1225–1232. MR 1410207, 10.1002/(SICI)1099-1476(199610)19:15<1225::AID-MMA827>3.0.CO;2-U
Reference: [FuGR] Fuchs M., Grotowski J., Reuling J.: On variational models for quasistatic Bingham fluids.Math. Methods Appl. Sci. 19 (1996), 991–1015. MR 1402153, 10.1002/(SICI)1099-1476(199608)19:12<991::AID-MMA810>3.0.CO;2-R
Reference: [FuS] Fuchs M., Seregin G.: Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening.Math. Methods Appl. Sci. 22 (1999), 317–351. Zbl 0928.76087, MR 1671448, 10.1002/(SICI)1099-1476(19990310)22:4<317::AID-MMA43>3.0.CO;2-A
Reference: [Gi] Giaquinta M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems.Birkhäuser, Basel-Boston-Berlin, 1993. Zbl 0786.35001, MR 1239172
Reference: [KMS] Kaplický P., Málek J., Stará J.: $C^{1,\alpha}$-solutions to a class of nonlinear fluids in two dimensions --- stationary Dirichlet problem.Zap. Nauchn. Sem. POMI 259 (1999), 122–144. Zbl 0978.35046
Reference: [La] Ladyzhenskaya O.A.: The Mathematical Theory of Viscous Incompressible Flow.Gordon and Breach, New York-London-Paris, 1969. Zbl 0184.52603, MR 0254401
Reference: [MNRR] Málek J., Nečas J., Rokyta M., Růžička M.: Weak and Measure Valued Solutions to Evolutionary PDEs.Chapman & Hall, London-Weinheim-New York, 1996. Zbl 0851.35002, MR 1409366
Reference: [Mo] Morrey C.B.: Multiple integrals in the calculus of variations.Grundlehren der math. Wiss. in Einzeldarstellungen, 130, Springer, Berlin-Heidelberg, 1966. Zbl 1213.49002, MR 2492985
Reference: [NW] Naumann J., Wolf J.: Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids.J. Math. Fluid Mech. 7 (2005), 298–313. Zbl 1070.35023, MR 2177130, 10.1007/s00021-004-0120-z
Reference: [Ru] Růžička M.: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics, 1748, Springer, Berlin, 2000. Zbl 0968.76531, MR 1810360, 10.1007/BFb0104030
Reference: [Wo] Wolf J.: Interior $C^{1,\alpha}$-regularity of weak solutions to the equations of stationary motions of certain non-Newtonian fluids in two dimensions.Boll. Unione Mat. Ital. Sez. B (8) 10 (2007), 317–340. MR 2339444
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_54-2013-4_4.pdf 306.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo