Previous |  Up |  Next

Article

Keywords:
Diophantine equation; Pell equation; generalized Fibonacci number; generalized Lucas number
Summary:
In this study, we determine when the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$ has an infinite number of positive integer solutions $x$ and $y$ for $0\leq n\leq 10.$ Moreover, we give all positive integer solutions of the same equation for $0\leq n\leq 10$ in terms of generalized Fibonacci sequence. Lastly, we formulate a conjecture related to the Diophantine equation $x^{2}-kxy+y^{2}-2^{n}=0$.
References:
[1] Leon, M. J. De: Pell's equations and Pell number triples. Fibonacci Q. 14 (1976), 456-460. MR 0419344
[2] Jacobson, M. J., Williams, H. C.: Solving the Pell Equation. CMS Books in Mathematics. Springer, New York (2009). MR 2466979 | Zbl 1177.11027
[3] Jones, J. P.: Representation of solutions of Pell equations using Lucas sequences. Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 30 (2003), 75-86. MR 2054717 | Zbl 1047.11017
[4] Kalman, D., Mena, R.: The Fibonacci numbers---exposed. Math. Mag. 76 (2003), 167-181. DOI 10.2307/3219318 | MR 2083847 | Zbl 1048.11014
[5] Keskin, R.: Solutions of some quadratic Diophantine equations. Comput. Math. Appl. 60 (2010), 2225-2230. DOI 10.1016/j.camwa.2010.08.012 | MR 2725312 | Zbl 1205.11035
[6] Keskin, R., Karaatli, O., Şiar, Z.: On the Diophantine equation $x^{2}-kxy+y^{2}+2^{n}=0$. Miskolc Math. Notes 13 (2012), 375-388. MR 3002637
[7] Keskin, R., Demirtürk, B.: Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences. Ars Comb. 111 (2013), 161-179. MR 3055272
[8] Marlewski, A., Zarzycki, P.: Infinitely many solutions of the Diophantine equation $x^{2}-kxy+y^{2}+x=0$. Comput. Math. Appl. 47 (2004), 115-121. DOI 10.1016/S0898-1221(04)90010-7 | MR 2062730
[9] McDaniel, W. L.: Diophantine representation of Lucas sequences. Fibonacci Q. 33 (1995), 59-63. MR 1316283 | Zbl 0830.11006
[10] Melham, R.: Conics which characterize certain Lucas sequences. Fibonacci Q. 35 (1997), 248-251. MR 1465839 | Zbl 0968.11501
[11] Nagell, T.: Introduction to Number Theory. John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm (1951). MR 0043111 | Zbl 0042.26702
[12] Ribenboim, P.: My Numbers, My Friends. Popular Lectures on Number Theory. Springer, New York (2000). MR 1761897 | Zbl 0947.11001
[13] Robertson, J. P.: Solving the generalized Pell equation $x^{2}-Dy^{2}=N$. http://hometown.aol.com/jpr2718/pell.pdf (2003).
[14] Robinowitz, S.: Algorithmic manipulation of Fibonacci identities. Applications of Fibonacci Numbers. 6 (1996), 389-408 G. E. Bergum, et al. Kluwer Acadademic Publishers, Dordrecht. DOI 10.1007/978-94-009-0223-7_33 | MR 1393473
[15] Yuan, P., Hu, Y.: On the Diophantine equation $x^{2}-kxy+y^{2}+lx=0$, $l\in \{ 1,2,4\}$. Comput. Math. Appl. 61 (2011), 573-577. MR 2764051 | Zbl 1217.11031
Partner of
EuDML logo