Previous |  Up |  Next

Article

Keywords:
$C^{*}$-algebra; $JB^{*}$-algebra; unit ball; invertible element; unitary element; unitary isotope; convex hull; unitary rank; unitary convex decomposition
Summary:
By exploiting his recent results, the author further investigates the extent to which variation in the coefficients of a unitary convex decomposition of a vector in a unital $JB^{*}$-algebra permits the vector decomposable as convex combination of fewer unitaries; certain $ C^{*}$-algebra results due to M. Rørdam have been extended to the general setting of $JB^{*}$-algebras.
References:
[1] Braun, R., Kaup, W., Upmeier, H.: A holomorphic characterization of Jordan $C^{*}$–algebras. Math. Z. 161 (1978), 277–290. DOI 10.1007/BF01214510 | MR 0493373 | Zbl 0385.32002
[2] Jacobson, N.: Structure and representations of Jordan algebras. AMS Providence, Rhode Island, 1968. MR 0251099 | Zbl 0218.17010
[3] Kadison, R. V., Pedersen, G. K.: Means and convex combinations of unitary operators. Math. Scand. 57 (1985), 249–266. MR 0832356 | Zbl 0573.46034
[4] Rørdam, M.: The theory of unitary rank and regular approximation. Ph.D. thesis, University of Pennsylvania, 1987.
[5] Rørdam, M.: Advances in the theory of unitary rank and regular approximations. Ann. of Math. (2) 128 (1988), 153–172. MR 0951510
[6] Siddiqui, A. A.: Computation of the $\lambda _{u}$–function in $JB^{*}$–algebras. submitted.
[7] Siddiqui, A. A.: Asymmetric decompositions of vectors in $JB^{*}$–algebras. Arch. Math. (Brno) 42 (2006), 159–166. MR 2240353 | Zbl 1164.46342
[8] Siddiqui, A. A.: On unitaries in $JB^{*}$–algebras. Indian J. Math. 48 (1) (2006), 35–48. MR 2229466 | Zbl 1115.46058
[9] Siddiqui, A. A.: Self–adjointness in unitary isotopes of $JB^{*}$–algebras. Arch. Math. 87 (2006), 350–358. DOI 10.1007/s00013-006-1718-6 | MR 2263481 | Zbl 1142.46020
[10] Siddiqui, A. A.: Average of two extreme points in $JBW^{*}$–triples. Proc. Japan Acad. Ser. A Math. Sci. 83 (2007), 176–178. DOI 10.3792/pjaa.83.176 | MR 2376600 | Zbl 1207.46046
[11] Siddiqui, A. A.: $JB^{*}$–algebras of topological stable rank $1$. Int. J. Math. Math. Sci. 2007 (2007), 24. DOI 10.1155/2007/37186 | MR 2306360
[12] Siddiqui, A. A.: A proof of the Russo–Dye theorem for $JB^{*}$–algebras. New York J. Math. 16 (2010), 53–60. MR 2645985 | Zbl 1231.46015
[13] Siddiqui, A. A.: Convex combinations of unitaries in $JB^{*}$–algebras. New York J. Math. 17 (2011), 127–137. MR 2781910 | Zbl 1227.46035
[14] Siddiqui, A. A.: The $\lambda _{u}$–function in $JB^{*}$–algebras. New York J. Math. 17 (2011), 139–147. MR 2781911 | Zbl 1227.46036
[15] Wright, J. D. M.: Jordan $C^{*}$–algebras. Michigan Math. J. 24 (1977), 291–302. MR 0487478 | Zbl 0384.46040
[16] Youngson, M. A.: A Vidav theorem for Banach Jordan algebras. Math. Proc. Cambridge Philos. Soc. 84 (1978), 263–272. DOI 10.1017/S0305004100055092 | MR 0493372 | Zbl 0392.46038
Partner of
EuDML logo