Previous |  Up |  Next

Article

Keywords:
semilinear differential equations; Caputo fractional derivative; mild solution; measure of noncompactness; fixed point; semigroup; Banach space
Summary:
This paper concerns the existence of mild solutions for fractional order integro-differential equations with infinite delay. Our analysis is based on the technique of Kuratowski’s measure of noncompactness and Mönch’s fixed point theorem. An example to illustrate the applications of main results is given.
References:
[1] Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York, 2012. MR 2962045 | Zbl 1273.35001
[2] Agarwal, R. P., Belmekki, M., Benchohra, M.: A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Differential Equations 2009 (2009), 1–47, Article ID 981728. MR 2505633 | Zbl 1182.34103
[3] Agarwal, R. P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109 (2010), 973–1033. DOI 10.1007/s10440-008-9356-6 | MR 2596185 | Zbl 1198.26004
[4] Agarwal, R. P., Meehan, M., O’Regan, D.: Fixed Point Theory and Applications. Cambridge University Press, 2001. DOI 10.1017/CBO9780511543005.008 | MR 1825411 | Zbl 0960.54027
[5] Appell, J. M., Kalitvin, A. S., Zabrejko, P. P.: Partial Integral Operators and Integrodifferential Equations. vol. 230, Marcel Dekker, Inc., New York, 2000. MR 1760093
[6] Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J.: Fractional Calculus Models and Numerical Methods. World Scientific Publishing, New York, 2012. MR 2894576 | Zbl 1248.26011
[7] Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1980. MR 0591679
[8] Benchohra, M., Henderson, J., Ntouyas, S., Ouahab, A.: Existence results for fractional order functional differential equations with infinite delay. J. Math. Anal. Appl. 338 (2008), 1340–1350. DOI 10.1016/j.jmaa.2007.06.021 | MR 2386501 | Zbl 1209.34096
[9] Bothe, D.: Multivalued perturbations of $m$–accretive differential inclusions. Israel J. Math. 108 (1998), 109–138. DOI 10.1007/BF02783044 | MR 1669396 | Zbl 0922.47048
[10] Case, K. M., Zweifel, P. F.: Linear Transport Theory. Addison-Wesley, Reading, MA, 1967. MR 0225547 | Zbl 0162.58903
[11] Chandrasekhe, S.: Radiative Transfer. Dover Publications, New York, 1960. MR 0111583
[12] Corduneanu, C., Lakshmikantham, V.: Equations with unbounded delay. Nonlinear Anal. 4 (1980), 831–877. DOI 10.1016/0362-546X(80)90001-2 | MR 0586852 | Zbl 0449.34048
[13] Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin, 2010. MR 2680847 | Zbl 1215.34001
[14] El–Borai, M.: Some probability densities and fundamental solutions of fractional evolution equations. Chaos, Solitons & Fractals 14 (2002), 433–440. DOI 10.1016/S0960-0779(01)00208-9 | MR 1903295 | Zbl 1005.34051
[15] Hale, J. K., Kato, J.: Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 21 (1) (1978), 11–41. MR 0492721 | Zbl 0383.34055
[16] Hale, J. K., Lunel, S. Verduyn: Introduction to Functional–Differential Equations. Applied Mathematical Sciences, vol. 99, Springer-Verlag, New York, 1993. MR 1243878
[17] Heinz, H.–P.: On the behaviour of measures of noncompactness with respect to differentiation and integration of vector–valued functions. Nonlinear Anal. 7 (12) (1983), 1351–1371. DOI 10.1016/0362-546X(83)90006-8 | MR 0726478 | Zbl 0528.47046
[18] Hilfer, R.: Applications of fractional calculus in physics. Singapore, World Scientific, 2000. MR 1890104 | Zbl 0998.26002
[19] Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Lecture Notes in Mathematics, vol. 1473, Springer-Verlag, Berlin, 1991. MR 1122588 | Zbl 0732.34051
[20] Kilbas, A. A., Srivastava, Hari M., Trujillo, Juan J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006. MR 2218073 | Zbl 1092.45003
[21] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional–Differential Equations. Kluwer Academic Publishers, Dordrecht, 1999. MR 1680144 | Zbl 0917.34001
[22] Lakshmikantham, V., Wen, L., Zhang, B.: Theory of Differential Equations with Unbounded Delay. Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1994. MR 1319339 | Zbl 0823.34069
[23] Li, F., Zhang, J.: Existence of mild solutions to fractional integrodifferential equations of neutral type with infinite delay. Adv. Differential Equations 2011 (2011), 1–15, Article ID 963463. MR 2774252 | Zbl 1213.45008
[24] Liang, J., Xiao, T.–J., van Casteren, J.: A note on semilinear abstract functional differential and integrodifferential equations with infinite delay. Appl. Math. Lett. 17 (4) (2004), 473–477. DOI 10.1016/S0893-9659(04)90092-4 | MR 2045755 | Zbl 1082.34543
[25] Mainardi, F., Paradisi, P., Gorenflo, R.: Probability distributions generated by fractional diffusion equations. Econophysics: An Emerging Science (Kertesz, J., Kondor, I., eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
[26] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York, 1993. MR 1219954
[27] Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4 (1980), 985–999. DOI 10.1016/0362-546X(80)90010-3 | MR 0586861
[28] Mophou, G. M., Nakoulima, O., N’Guérékata, G. M.: Existence results for some fractional differential equations with nonlocal conditions. Nonlinear Stud. 17 (2010), 15–22. MR 2647799 | Zbl 1204.34010
[29] Mophou, G. M., N’Guérékata, G. M.: Existence of mild solution for some fractional differential equations with nonlocal conditions. Semigroup Forum 79 (2009), 315–322. DOI 10.1007/s00233-008-9117-x | MR 2538728
[30] Obukhovskii, V., Yao, J.–C.: Some existence results for fractional functional differential equations. Fixed Point Theory 11 (2010), 85–96. MR 2656008 | Zbl 1202.34141
[31] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. MR 1658022 | Zbl 0924.34008
[32] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon, 1993. MR 1347689 | Zbl 0818.26003
[33] Tarasov, V. E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg; Higher Education Press, Beijing, 2010. MR 2796453
[34] Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer Verlag, New York, 1996. MR 1415838 | Zbl 0870.35116
Partner of
EuDML logo