Previous |  Up |  Next

Article

Keywords:
solvable Lie algebra; nilradical; derivation
Summary:
A pair of sequences of nilpotent Lie algebras denoted by $N_{n,11}$ and $N_{n,19}$ are introduced. Here $n$ denotes the dimension of the algebras that are defined for $n\ge 6$; the first term in the sequences are denoted by 6.11 and 6.19, respectively, in the standard list of six-dimensional Lie algebras. For each of $N_{n,11}$ and $N_{n,19}$ all possible solvable extensions are constructed so that $N_{n,11}$ and $N_{n,19}$ serve as the nilradical of the corresponding solvable algebras. The construction continues Winternitz’ and colleagues’ program of investigating solvable Lie algebras using special properties rather than trying to extend one dimension at a time.
References:
[1] Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L.: Solvable Lie algebras with naturally graded nilradicals and their invariants. J. Phys. A 39 (6) (2006), 1339–1355. DOI 10.1088/0305-4470/39/6/008 | MR 2202805 | Zbl 1095.17003
[2] Ancochea, J. M., Campoamor–Stursberg, R., Garcia Vergnolle, L.: Classification of Lie algebras with naturally graded quasi–filiform nilradicals. J. Geom. Phys. 61 (11) (2011), 2168–2186. DOI 10.1016/j.geomphys.2011.06.015 | MR 2827117 | Zbl 1275.17023
[3] Campoamor–Stursberg, R.: Solvable Lie algebras with an $\mathbb{N}$–graded nilradical of maximal nilpotency degree and their invariants. J. Phys. A 43 (14) (2010), 18pp., 145202. DOI 10.1088/1751-8113/43/14/145202 | MR 2606433
[4] Cartan, E.: Sur la structure des groupes de transformations finis et continus. Paris: These, Nony, 1894; 2nd ed. Vuibert, 1933. Zbl 0007.10204
[5] Gantmacher, F.: On the classification of real simple Lie groups. Mat. Sb. (1950), 103–112.
[6] Gong, M.–P.: Classification of nilpotent Lie algebras of dimension $7$. Ph.D. thesis, University of Waterloo, 1998.
[7] Hindeleh, F., Thompson, G.: Seven dimensional Lie algebras with a four-dimensional nilradical. Algebras Groups Geom. 25 (3) (2008), 243–265. MR 2522804 | Zbl 1210.17016
[8] Humphreys, J.: Lie algebras and their representations. Springer, 1997.
[9] Jacobson, N.: Lie algebras. Interscience Publishers, 1962. MR 0143793 | Zbl 0121.27504
[10] Morozov, V. V.: Classification of nilpotent Lie algebras in dimension six. Izv. Vyssh. Uchebn. Zaved. Mat. 4 (5) (1958), 161–171. MR 0130326
[11] Mubarakzyanov, G. M.: Classification of real Lie algebras in dimension five. Izv. Vyssh. Uchebn. Zaved. Mat. 3 (34) (1963), 99–106. MR 0155871
[12] Mubarakzyanov, G. M.: Classification of solvable Lie algebras in dimension six with one non-nilpotent basis element. Izv. Vyssh. Uchebn. Zaved. Mat. 4 (35) (1963), 104–116. MR 0155872
[13] Mubarakzyanov, G. M.: On solvable Lie algebras. Izv. Vyssh. Uchebn. Zaved. Mat. 1 (32) (1963), 114–123. MR 0153714 | Zbl 0166.04104
[14] Ndogmo, J. C., Winternitz, P.: Solvable Lie algebras with abelian nilradicals. J. Phys. A 27 (2) (1994), 405–423. DOI 10.1088/0305-4470/27/2/024 | MR 1267422 | Zbl 0835.17007
[15] Patera, J., Sharp, R. T., Winternitz, P., Zassenhaus, H.: Invariants of real low dimension Lie algebras. J. Math. Phys. 17 (1976), 986–994. DOI 10.1063/1.522992 | MR 0404362 | Zbl 0357.17004
[16] Rubin, J. L., Winternitz, P.: Solvable Lie algebras with Heisenberg ideals. J. Phys. A 26 (1993), 1123–1138. DOI 10.1088/0305-4470/26/5/031 | MR 1211350 | Zbl 0773.17004
[17] Seeley, C.: $7$–dimensional nilpotent Lie algebra. Trans. Amer. Math. Soc. 335 (2) (1993), 479–496. MR 1068933
[18] Shabanskaya, A.: Classification of six dimensional solvable indecomposable Lie algebras with a codimension one nilradical over $\mathbb{R}$. Ph.D. thesis, University of Toledo, 2011. MR 2890187
[19] Shabanskaya, A., Thompson, G.: Six–dimensional Lie algebras with a five–dimensional nilradical. J. Lie Theory 23 (2) (2013), 313–355. MR 3113513 | Zbl 1280.17014
[20] Skjelbred, T., Sund, T.: Classification of nilpotent Lie algebras in dimension six. University of Oslo, 1977, preprint.
[21] Snobl, L.: On the structure of maximal solvable extensions and of Levi extensions of nilpotent Lie algebras. J. Phys. A 43 (50) (2010), 17pp. DOI 10.1088/1751-8113/43/50/505202 | MR 2740380 | Zbl 1231.17004
[22] Snobl, L.: Maximal solvable extensions of filiform algebras. Arch. Math. (Brno 47 (5) (2011), 405–414. MR 2876944 | Zbl 1265.17017
[23] Snobl, L., Karasek, D.: Classification of solvable Lie algebras with a given nilradical by means of solvable extensions of its subalgebras. Linear Algebra Appl. 432 (7) (2010), 18/36–1850. DOI 10.1016/j.laa.2009.11.035 | MR 2592920 | Zbl 1223.17017
[24] Snobl, L., Winternitz, P.: A class of solvable Lie algebras and their Casimir invariants. J. Phys. A 38 (12) (2005), 2687–2700. DOI 10.1088/0305-4470/38/12/011 | MR 2132082 | Zbl 1063.22023
[25] Snobl, L., Winternitz, P.: All solvable extensions of a class of nilpotent Lie algebras of dimension $n$ and degree of nilpotency $n-1$. J. Phys. A 2009 (2009), 16pp., 105201. MR 2485857 | Zbl 1178.17009
[26] Tremblay, S., Winternitz, P.: Solvable Lie algebras with triangular nilradicals. J. Phys. A. 31 (2) (1998), 789–806. DOI 10.1088/0305-4470/31/2/033 | MR 1629163 | Zbl 1001.17011
[27] Turkowski, P.: Solvable Lie algebras of dimension six. J. Math. Phys. 31 (6) (1990), 1344–1350. DOI 10.1063/1.528721 | MR 1054322 | Zbl 0722.17012
[28] Umlauf, K. A.: Über die Zusammensetzung der endlichen continuierliche Transformationgruppen insbesondere der Gruppen von Rang null. Ph.D. thesis, University of Leipzig, 1891.
[29] Vergne, M.: Cohomologie des algèbres de Lie nilpotentes. Application a l’étude de la variété des algebres de Lie nilpotentes. Bull. Math. Soc. France 78 (1970), 81–116. MR 0289609 | Zbl 0244.17011
[30] Wang, Y., Lin, J., Deng, S.: Solvable Lie algebras with quasifiliform nilradicals. Comm. Algebra 36 (11) (2008), 4052–4067. DOI 10.1080/00927870802174629 | MR 2460402 | Zbl 1230.17007
Partner of
EuDML logo