[2] Arendt, W.:
Semigroups and evolution equations: Functional calculus, regularity and kernel estimates. Handbook of Differential Equations: Evolutionary Equations vol. I C. M. Dafermos et al. Elsevier/North-Holland Amsterdam (2004), 1-85.
MR 2103696 |
Zbl 1082.35001
[3] Arendt, W., Batty, C. J. K., Hieber, M., Neubrander, F.:
Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics 96. Birkhäuser Basel (2001).
MR 1886588
[6] Arendt, W., Bu, S.:
Fourier series in Banach spaces and maximal regularity. Vector Measures, Integration and Related Topics. Selected papers from the 3rd conference on vector measures and integration, Eichsttt, Germany, September 24-26, 2008. Operator Theory: Advances and Applications 201 Birkhäuser Basel (2010), 21-39.
MR 2743491 |
Zbl 1254.42015
[8] Cannarsa, P., Vespri, V.:
On maximal $L^{p}$ regularity for the abstract Cauchy problem. Boll. Unione Mat. Ital., VI. Ser., B 5 (1986), 165-175.
MR 0841623
[9] Prato, G. Da, Grisvard, P.:
Sommes d'opérateurs linéaires et équations différentielles opérationnelles. J. Math. Pur. Appl., IX. Sér. 54 (1975), 305-387 French.
MR 0442749 |
Zbl 0315.47009
[10] Simon, L. De:
Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ. Padova 34 (1964), 205-223 Italian.
MR 0176192 |
Zbl 0196.44803
[11] Denk, R., Hieber, M., Prüss, J.:
$\mathcal{R}$-boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type. Mem. Am. Math. Soc. Providence RI 166 (2003).
MR 2006641
[12] Dore, G.:
$L^{p}$-regularity for abstract differential equations. Functional Analysis and Related Topics, 1991. Proceedings of the international conference in memory of Professor Kôsaku Yosida held at RIMS, Kyoto University, Japan, July 29--Aug. 2, 1991. Lect. Notes Math. 1540 Springer Berlin (1993), 25-38.
MR 1225809
[13] El-Mennaoui, O., Keyantuo, V., Laasri, H.: Infinitesimal product of semigroups. Ulmer Seminare 16 (2011), 219-230.
[14] Hieber, M., Monniaux, S.:
Heat kernels and maximal $L_p-L_q$ estimates: The non-autonomous case. J. Fourier Anal. Appl. 6 (2000), 468-481.
DOI 10.1007/BF02511541 |
Zbl 0979.35028
[17] Kunstmann, P. C., Weis, L.:
Maximal $L^p$-regularity for parabolic equations, Fourier multiplier theorems and $H^{\infty}$-functional calculus. Functional Analytic Methods for Evolution Equations. Based on lectures given at the autumn school on evolution equations and semigroups, Levico Terme, Trento, Italy, October 28--November 2, 2001. Lecture Notes in Mathematics 1855 M. Iannelli, et al. Springer Berlin (2004), 65-311.
DOI 10.1007/978-3-540-44653-8_2 |
MR 2108959 |
Zbl 1097.47041
[18] Lunardi, A.:
Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and their Applications 16. Birkhäuser Basel (1995).
MR 1329547
[21] Slavík, A.:
Product Integration, Its History and Applications. History of Mathematics 29, Jindřich Nečas Center for Mathematical Modeling Lecture Notes 1. Matfyzpress Praha (2007).
MR 2917851
[22] Sobolevskij, P. E.:
Coerciveness inequalities for abstract parabolic equations. Sov. Math., Dokl. 5 (1964), 894-897
Dokl. Akad. Nauk SSSR 157 (1964), 52-55 Russian. MR 0166487 | Zbl 0149.36001
[23] Triebel, H.:
Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser Basel (1983).
MR 0781540