Previous |  Up |  Next

Article

Title: A dyadic view of rational convex sets (English)
Author: Czédli, Gábor
Author: Maróti, Miklós
Author: Romanowska, A. B.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 55
Issue: 2
Year: 2014
Pages: 159-173
Summary lang: English
.
Category: math
.
Summary: Let $F$ be a subfield of the field $\mathbb R$ of real numbers. Equipped with the binary arithmetic mean operation, each convex subset $C$ of $F^n$ becomes a commutative binary mode, also called idempotent commutative medial (or entropic) groupoid. Let $C$ and $C'$ be convex subsets of $F^n$. Assume that they are of the same dimension and at least one of them is bounded, or $F$ is the field of all rational numbers. We prove that the corresponding idempotent commutative medial groupoids are isomorphic iff the affine space $F^n$ over $F$ has an automorphism that maps $C$ onto $C'$. We also prove a more general statement for the case when $C,C'\subseteq F^n$ are barycentric algebras over a unital subring of $F$ that is distinct from the ring of integers. A related result, for a subring of $\mathbb R$ instead of a subfield $F$, is given in Czédli G., Romanowska A.B., Generalized convexity and closure conditions, Internat. J. Algebra Comput. 23 (2013), no. 8, 1805--1835. (English)
Keyword: convex set
Keyword: mode
Keyword: barycentric algebra
Keyword: commutative medial groupoid
Keyword: entropic groupoid
Keyword: entropic algebra
Keyword: dyadic number
MSC: 08A99
MSC: 52A01
idZBL: Zbl 06391534
idMR: MR3193922
.
Date available: 2014-06-07T15:31:29Z
Last updated: 2016-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/143798
.
Reference: [1] Burris S., Sankappanavar H.P.: A Course in Universal Algebra.Graduate Texts in Mathematics, 78, Springer, New York–Berlin, 1981; The Millennium Edition, http://www.math.uwaterloo.ca/$\sim$snburris/htdocs/ualg.html. Zbl 0478.08001, MR 0648287
Reference: [2] Cox D.A.: Why Eisenstein proved the Eisenstein criterion and why Schönemann discovered it first.Amer. Math. Monthly 118 (2011), no. 1, 3–21. Zbl 1225.11002, MR 2795943, 10.4169/amer.math.monthly.118.01.003
Reference: [3] Czédli G., Romanowska A.B.: An algebraic closure for barycentric algebras and convex sets.Algebra Universalis 68 (2012), 111–143. Zbl 1261.08002, MR 3008741, 10.1007/s00012-012-0195-y
Reference: [4] Czédli G., Romanowska A.B.: Generalized convexity and closure conditions.Internat. J. Algebra Comput. 23 (2013), no. 8, 1805–1835. MR 3163609
Reference: [5] Fulton W.: Algebraic Curves. An Introduction to Algebraic Geometry.2008; {\tt {http://www.math.lsa.umich.edu/ asciitildewfulton/CurveBook.pdf}}. Zbl 0681.14011, MR 1042981
Reference: [6] Ježek J., Kepka T.: Medial Groupoids.Academia, Praha, 1983. MR 0734873
Reference: [7] Matczak K., Romanowska A.: Quasivarieties of cancellative commutative binary modes.Studia Logica 78 (2004), 321–335. Zbl 1092.08005, MR 2108032, 10.1007/s11225-005-1335-6
Reference: [8] Matczak K., Romanowska A.B., Smith J.D.H.: Dyadic polygons.Internat. J. Algebra Comput. 21 (2011), 387–408; DOI:10.1142/80218196711006248. Zbl 1223.52008, MR 2804518, 10.1142/S0218196711006248
Reference: [9] Pszczoła K., Romanowska A., Smith J.D.H.: Duality for some free modes.Discuss. Math. Gen. Algebra Appl. 23 (2003), 45–62. Zbl 1060.08009, MR 2070045, 10.7151/dmgaa.1063
Reference: [10] Romanowska A.B., Smith J.D.H.: Modal Theory.Heldermann, Berlin, 1985. Zbl 0553.08001, MR 0788695
Reference: [11] Romanowska A.B., Smith J.D.H.: On the structure of semilattice sums.Czechoslovak Math. J. 41 (1991), 24–43. Zbl 0793.08010, MR 1087619
Reference: [12] Romanowska A.B., Smith J.D.H.: Modes.World Scientific, Singapore, 2002. Zbl 1060.08009, MR 1932199
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_55-2014-2_3.pdf 339.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo