Previous |  Up |  Next

Article

Keywords:
local existence; complex Ginzburg-Landau equation
Summary:
This paper gives the local existence of mild solutions to the Cauchy problem for the complex Ginzburg-Landau type equation $$ \dfrac {\partial u}{\partial t} -(\lambda +{\rm i} \alpha )\Delta u +(\kappa +{\rm i} \beta )|u|^{q-1}u-\gamma u=0 $$ in $\mathbb {R}^{N}\times (0,\infty )$ with $L^{p}$-initial data $u_{0}$ in the subcritical case ($1\leq q< 1+2p/N$), where $u$ is a complex-valued unknown function, $\alpha $, $\beta $, $\gamma $, $\kappa \in \mathbb {R}$, $\lambda >0$, $p>1$, ${\rm i} =\sqrt {-1}$ and $N\in \mathbb {N}$. The proof is based on the $L^{p}$-$L^{q}$ estimates of the linear semigroup $\{\exp (t(\lambda +{\rm i} \alpha )\Delta )\}$ and usual fixed-point argument.
References:
[1] Clément, P., Okazawa, N., Sobajima, M., Yokota, T.: A simple approach to the Cauchy problem for complex Ginzburg-Landau equations by compactness methods. J. Differ. Equations 253 (2012), 1250-1263. DOI 10.1016/j.jde.2012.05.002 | MR 2925912 | Zbl 1248.35203
[2] Giga, M., Giga, Y., Saal, J.: Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions. Progress in Nonlinear Differential Equations and Their Applications 79 Birkhäuser, Boston (2010). MR 2656972 | Zbl 1215.35001
[3] Ginibre, J., Velo, G.: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation I. Compactness methods. Physica D 95 (1996), 191-228. DOI 10.1016/0167-2789(96)00055-3 | MR 1406282 | Zbl 0889.35045
[4] Ginibre, J., Velo, G.: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation II. Contraction methods. Commun. Math. Phys. 187 (1997), 45-79. DOI 10.1007/s002200050129 | MR 1463822 | Zbl 0889.35046
[5] Kobayashi, Y., Matsumoto, T., Tanaka, N.: Semigroups of locally Lipschitz operators associated with semilinear evolution equations. J. Math. Anal. Appl. 330 (2007), 1042-1067. DOI 10.1016/j.jmaa.2006.08.028 | MR 2308426 | Zbl 1123.34044
[6] Levermore, C. D., Oliver, M.: The complex Ginzburg-Landau equation as a model problem. Dynamical Systems and Probabilistic Methods in Partial Differential Equations P. Deift et al. Lect. Appl. Math. 31 AMS, Providence 141-190 (1996). MR 1363028 | Zbl 0845.35003
[7] Matsumoto, T., Tanaka, N.: Semigroups of locally Lipschitz operators associated with semilinear evolution equations of parabolic type. Nonlinear Anal. 69 (2008), 4025-4054. DOI 10.1016/j.na.2007.10.035 | MR 2463352 | Zbl 1169.47045
[8] Matsumoto, T., Tanaka, N.: Well-posedness for the complex Ginzburg-Landau equations. Current Advances in Nonlinear Analysis and Related Topics T. Aiki et al. GAKUTO Internat. Ser. Math. Sci. Appl. 32 Gakk$\bar o$tosho, Tokyo (2010), 429-442. MR 2668292 | Zbl 1208.35143
[9] Okazawa, N.: Smoothing effect and strong $L^2$-wellposedness in the complex Ginzburg-Landau equation. Differential Equations. Inverse and Direct Problems A. Favini, A. Lorenzi Lecture Notes in Pure and Applied Mathematics 251 CRC Press, Boca Raton (2006), 265-288. DOI 10.1201/9781420011135.ch14 | MR 2275982 | Zbl 1110.35030
[10] Okazawa, N., Yokota, T.: Monotonicity method applied to the complex Ginzburg-Landau and related equations. J. Math. Anal. Appl. 267 (2002), 247-263. DOI 10.1006/jmaa.2001.7770 | MR 1886827 | Zbl 0995.35029
[11] Okazawa, N., Yokota, T.: Perturbation theory for $m$-accretive operators and generalized complex Ginzburg-Landau equations. J. Math. Soc. Japan 54 (2002), 1-19. DOI 10.2969/jmsj/1191593952 | MR 1864925 | Zbl 1045.35080
[12] Okazawa, N., Yokota, T.: Non-contraction semigroups generated by the complex Ginz-burg-Landau equation. Nonlinear Partial Differential Equations and Their Applications N. Kenmochi et al. GAKUTO Internat. Ser. Math. Sci. Appl. 20 Gakk$\bar o$tosho, Tokyo (2004), 490-504. MR 2087493
[13] Okazawa, N., Yokota, T.: Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete Contin. Dyn. Syst. 28 (2010), 311-341. DOI 10.3934/dcds.2010.28.311 | MR 2629484 | Zbl 1198.47089
[14] Yang, Y.: On the Ginzburg-Landau wave equation. Bull. Lond. Math. Soc. 22 (1990), 167-170. DOI 10.1112/blms/22.2.167 | MR 1045289 | Zbl 0663.35095
[15] Yokota, T., Okazawa, N.: Smoothing effect for the complex Ginzburg-Landau equation (general case). Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006), suppl., 305-316. MR 2268800
Partner of
EuDML logo