[7] Evertse, J.-H., Schlickewei, H. P., Schmidt, W. M.: 
Linear equations in variables which lie in a multiplicative group. Ann. of Math. (2), 155, 3, 2002, 807-836,  
DOI 10.2307/3062133 | 
MR 1923966 | 
Zbl 1026.11038[8] Győry, K., Sárközy, A., Stewart, C. L.: 
On the number of prime factors of integers of the form $ab+1$. Acta Arith., 74, 4, 1996, 365-385,  
MR 1378230 | 
Zbl 0857.11047[9] Hernández, S., Luca, F.: 
On the largest prime factor of $(ab+1)(ac+1)(bc+1)$. Bol. Soc. Mat. Mexicana (3), 9, 2, 2003, 235-244,  
MR 2029272 | 
Zbl 1108.11030[11] Mihăilescu, P.: 
Primary cyclotomic units and a proof of Catalan's conjecture. J. Reine Angew. Math., 572, 2004, 167-195,  
MR 2076124 | 
Zbl 1067.11017[12] Sárközy, A., Stewart, C. L.: 
On divisors of sums of integers. II. J. Reine Angew. Math., 365, 1986, 171-191,  
MR 0826157 | 
Zbl 0578.10045[14] Sárközy, A., Stewart, C. L.: 
On prime factors of integers of the form $ab+1$. Publ. Math. Debrecen, 56, 3--4, 2000, 559-573, Dedicated to Professor Kálmán Győry on the occasion of his 60th birthday..  
MR 1766000 | 
Zbl 0960.11045[15] Stewart, C. L., Tijdeman, R.: 
On the greatest prime factor of $(ab+1)(ac+1)(bc+1)$. Acta Arith., 79, 1, 1997, 93-101,  
MR 1438120 | 
Zbl 0869.11072[16] Szalay, L., Ziegler, V.: $S$-diophantine quadruples with $S={2,q}$. (in preperation). 
[18] Szalay, L., Ziegler, V.: 
$S$-diophantine quadruples with two primes congruent 3 modulo 4. Integers, 13, 2013, Paper No. A80, 9pp..  
MR 3167927