[3] Buchberger, B., Winkler, F.:
Gröbner Bases and Applications. Cambridge University Press, Cambridge 1998.
MR 1699811 |
Zbl 0883.00014
[5] Conte, G., Moog, C. H., Perdon, A. M.:
Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Communications and Control Engineering. Springer-Verlag, London 2007.
MR 2305378
[6] Cox, D., Little, J., O'Shea, D.:
Ideals, Varieties, and Algorithms. Springer-Verlag, New York 2007.
MR 2290010 |
Zbl 1118.13001
[8] Glad, S. T.:
Nonlinear regulators and Ritt's remainder algorithm. In: Analysis of Controlled Dynamical Systems (B. Bournard, B. Bride, J. P. Gauthier, and I. Kupka, eds.), Progress in systems and control theory 8, Birkhäuser, Boston 1991, pp. 224-232
MR 1131996 |
Zbl 0794.93042
[9] Glumineau, A., Moog, C. H., Plestan, F.:
New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 598-603.
DOI 10.1109/9.489283 |
MR 1385333 |
Zbl 0851.93018
[11] Halás, M.:
Nonlinear time-delay systems: a polynomial approach using Ore algebras. In: Topics in Time-Delay Systems: Analysis, Algorithms and Control (J. J. Loiseau, W. Michiels, S. Niculescu, and R. Sipahi, eds.), Lecture Notes in Control and Information Sciences, Springer, 2009.
MR 2573747
[12] Halás, M.: Computing an input-output representation of a neutral state-space system. In: IFAC Workshop on Time Delay Systems, Grenoble 2013.
[15] Halás, M., Kotta, Ü., Moog, C. H.: Transfer function approach to the model matching problem of nonlinear systems. In: 17th IFAC World Congress, Seoul 2008.
[16] Halás, M., Moog, C. H.: A polynomial solution to the model matching problem of nonlinear time-delay systems. In: European Control Conference, Budapest 2009.
[17] Huba, M.:
Comparing 2DOF PI and predictive disturbance observer based filtered PI control. J. Process Control 23 (2013), 1379-1400.
DOI 10.1016/j.jprocont.2013.09.007
[19] Kotta, Ü., Kotta, P., Halás, M.:
Reduction and transfer equivalence of nonlinear control systems: unification and extension via pseudo-linear algebra. Kybernetika 46 (2010), 831-849.
MR 2778925 |
Zbl 1205.93027
[20] Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M.:
The structure of nonlinear time-delay systems. Kybernetika 36 (2000), 53-62.
MR 1760888 |
Zbl 1249.93102
[21] Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M.:
Observability and observers for nonlinear systems with time delays. Kybernetika 38 (2002), 445-456.
MR 1937139 |
Zbl 1265.93060
[26] Rudolph, J.:
Viewing input-output system equivalence from differential algebra. J. Math. Systems Estim. Control 4 (1994), 353-383.
MR 1298841 |
Zbl 0806.93012
[27] Walther, U., Georgiou, T. T., Tannenbaum, A.:
On the computation of switching surfaces in optimal control: a Gröbner basis approach. IEEE Trans. Automat. Control 46 (2001), 534-540.
DOI 10.1109/9.917655 |
MR 1822964 |
Zbl 0998.49023
[28] Xia, X., Márquez-Martínez, L. A., Zagalak, P., Moog, C. H.:
Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549-1555.
DOI 10.1016/S0005-1098(02)00051-1 |
MR 2134034
[29] Zhang, J., Xia, X., Moog, C. H.:
Parameter identifiability of nonlinear systems with time-delay. IEEE Trans. Automat. Control 51 (2006), 371-375.
DOI 10.1109/TAC.2005.863497 |
MR 2201731