Previous |  Up |  Next

Article

Keywords:
nonlinear time-delay systems; neutral systems; input-output representation; linear algebraic methods; Gröbner bases
Summary:
The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended further to nonlinear neutral state-space systems, and it is shown that also in such a case an input-output representation, at least locally, always exists. In general, it represents a neutral system again. Computational aspects related to the state elimination problem are discussed as well.
References:
[1] Anguelova, M., Wennberg, B.: State elimination and identifiability of the delay parameter for nonlinear time-delay systems. Automatica 44 (2008), 1373-1378. DOI 10.1016/j.automatica.2007.10.013 | MR 2531805 | Zbl 1283.93084
[2] Becker, T., Weispfenning, V.: Gröbner Bases. Springer-Verlag, New York 1993. MR 1213453 | Zbl 0772.13010
[3] Buchberger, B., Winkler, F.: Gröbner Bases and Applications. Cambridge University Press, Cambridge 1998. MR 1699811 | Zbl 0883.00014
[4] Cohn, P. M.: Free Rings and Their Relations. Academic Press, London 1985. MR 0800091 | Zbl 0659.16001
[5] Conte, G., Moog, C. H., Perdon, A. M.: Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition. Communications and Control Engineering. Springer-Verlag, London 2007. MR 2305378
[6] Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and Algorithms. Springer-Verlag, New York 2007. MR 2290010 | Zbl 1118.13001
[7] Diop, S.: Elimination in control theory. Math. Contr. Signals Syst. 4 (1991), 72-86. DOI 10.1007/BF02551378 | MR 1082853 | Zbl 0727.93025
[8] Glad, S. T.: Nonlinear regulators and Ritt's remainder algorithm. In: Analysis of Controlled Dynamical Systems (B. Bournard, B. Bride, J. P. Gauthier, and I. Kupka, eds.), Progress in systems and control theory 8, Birkhäuser, Boston 1991, pp. 224-232 MR 1131996 | Zbl 0794.93042
[9] Glumineau, A., Moog, C. H., Plestan, F.: New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 598-603. DOI 10.1109/9.489283 | MR 1385333 | Zbl 0851.93018
[10] Halás, M.: An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica 44 (2008), 1181-1190. DOI 10.1016/j.automatica.2007.09.008 | MR 2531783 | Zbl 1283.93077
[11] Halás, M.: Nonlinear time-delay systems: a polynomial approach using Ore algebras. In: Topics in Time-Delay Systems: Analysis, Algorithms and Control (J. J. Loiseau, W. Michiels, S. Niculescu, and R. Sipahi, eds.), Lecture Notes in Control and Information Sciences, Springer, 2009. MR 2573747
[12] Halás, M.: Computing an input-output representation of a neutral state-space system. In: IFAC Workshop on Time Delay Systems, Grenoble 2013.
[13] Halás, M., Anguelova, M.: When retarded nonlinear time-delay systems admit an input-output representation of neutral type. Automatica 49 (2013) 561-567. DOI 10.1016/j.automatica.2012.11.027 | MR 3004725 | Zbl 1259.93066
[14] Halás, M., Kotta, Ü.: A transfer function approach to the realisation problem of nonlinear systems. Internat. J. Control 85 (2012), 320-331. DOI 10.1080/00207179.2011.651748 | MR 2881269 | Zbl 1282.93078
[15] Halás, M., Kotta, Ü., Moog, C. H.: Transfer function approach to the model matching problem of nonlinear systems. In: 17th IFAC World Congress, Seoul 2008.
[16] Halás, M., Moog, C. H.: A polynomial solution to the model matching problem of nonlinear time-delay systems. In: European Control Conference, Budapest 2009.
[17] Huba, M.: Comparing 2DOF PI and predictive disturbance observer based filtered PI control. J. Process Control 23 (2013), 1379-1400. DOI 10.1016/j.jprocont.2013.09.007
[18] Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E., Wyrwas, M.: Irreducibility, reduction and transfer equivalence of nonlinear input-output equations on homogeneous time scales. Syst. Control Lett. 58 (2009), 646-651. DOI 10.1016/j.sysconle.2009.04.006 | MR 2554398 | Zbl 1184.93025
[19] Kotta, Ü., Kotta, P., Halás, M.: Reduction and transfer equivalence of nonlinear control systems: unification and extension via pseudo-linear algebra. Kybernetika 46 (2010), 831-849. MR 2778925 | Zbl 1205.93027
[20] Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M.: The structure of nonlinear time-delay systems. Kybernetika 36 (2000), 53-62. MR 1760888 | Zbl 1249.93102
[21] Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M.: Observability and observers for nonlinear systems with time delays. Kybernetika 38 (2002), 445-456. MR 1937139 | Zbl 1265.93060
[22] Ohtsuka, T.: Model structure simplification of nonlinear systems via immersion. IEEE Trans. Automat. Control 50 (2005), 607-618. DOI 10.1109/TAC.2005.847062 | MR 2141563
[23] Ore, O.: Linear equations in non-commutative fields. Ann. Math. 32 (1931), 463-477. DOI 10.2307/1968245 | MR 1503010 | Zbl 0001.26601
[24] Ore, O.: Theory of non-commutative polynomials. Ann. Math. 34(1933), 480-508. DOI 10.2307/1968173 | MR 1503119 | Zbl 0007.15101
[25] Picard, P., Lafay, J. F., Kučera, V.: Model matching for linear systems with delays and 2D systems. Automatica 34 (1998), 183-191. DOI 10.1016/S0005-1098(98)00177-0 | MR 1609823 | Zbl 0937.93007
[26] Rudolph, J.: Viewing input-output system equivalence from differential algebra. J. Math. Systems Estim. Control 4 (1994), 353-383. MR 1298841 | Zbl 0806.93012
[27] Walther, U., Georgiou, T. T., Tannenbaum, A.: On the computation of switching surfaces in optimal control: a Gröbner basis approach. IEEE Trans. Automat. Control 46 (2001), 534-540. DOI 10.1109/9.917655 | MR 1822964 | Zbl 0998.49023
[28] Xia, X., Márquez-Martínez, L. A., Zagalak, P., Moog, C. H.: Analysis of nonlinear time-delay systems using modules over non-commutative rings. Automatica 38 (2002), 1549-1555. DOI 10.1016/S0005-1098(02)00051-1 | MR 2134034
[29] Zhang, J., Xia, X., Moog, C. H.: Parameter identifiability of nonlinear systems with time-delay. IEEE Trans. Automat. Control 51 (2006), 371-375. DOI 10.1109/TAC.2005.863497 | MR 2201731
[30] Zheng, Y., Willems, J., Zhang, C.: A polynomial approach to nonlinear system controllability. IEEE Trans. Automat. Control 46 (2001), 1782-1788. DOI 10.1109/9.964691 | MR 1864751 | Zbl 1175.93045
Partner of
EuDML logo