Previous |  Up |  Next

Article

Keywords:
autonomous chaotic system; optimal control; adaptive control; single state feedback control; Pontryagin Minimum Principle
Summary:
In this paper, the problems on purposefully controlling chaos for a three-dimensional quadratic continuous autonomous chaotic system, namely the chaotic Pehlivan-Uyaroglu system are investigated. The chaotic system, has three equilibrium points and more interestingly the equilibrium points have golden proportion values, which can generate single folded attractor. We developed an optimal control design, in order to stabilize the unstable equilibrium points of this system. Furthermore, we propose Lyapunov stability to control the Pehlivan-Uyaroglu system with unknown parameters by way of a feedback control approach and a single controller. Numerical simulations are performed to demonstrate the effectiveness of the proposed control strategies.
References:
[1] Yagasaki, K.: Chaos in a pendulum with feedback control. Nonlinear Dyn. 6 (1994), 125-142. DOI 10.1007/BF00044981
[2] Han, S. K., Kerrer, C., Kuramoto, Y.: Dephasing and bursting in coupled neural oscillators. Phys. Rev. Lett. 75 (1995), 3190-3193. DOI 10.1103/PhysRevLett.75.3190
[3] Cuomo, K. M., Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications. Phys. Rev. Lett. 71 (1993), 65-68. DOI 10.1103/PhysRevLett.71.65
[4] Nik, H. Saberi, Gorder, R. A. Van: Competitive modes for the Baier-Sahle hyperchaotic flow in arbitrary dimensions. Nonlinear Dyn. 74 (2013), 3, 581-590. MR 3117644
[5] Ott, E., Grebogi, C., Yorke, J. A.: Controlling chaos. Phys. Rev. Lett. 64 (1990), 1196-1199. DOI 10.1103/PhysRevLett.64.1196 | MR 1041523 | Zbl 0964.37502
[6] Azhmyakov, V., Basin, M. V., Gil-Garcia, A. E.: Optimal control processes associated with a class of discontinuous control systems: applications to sliding mode dynamics. Kybernetika 50 (2014), 1, 5-18. MR 3195001
[7] Jiang, Y., Dai, J.: Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. Kybernetika 47 (2011), 4, 612-629. MR 2884864 | Zbl 1227.93033
[8] Wang, H., Han, Z Z., Xie, Q. Y., Zhang, W.: Finite-time chaos control of unified chaotic systems with uncertain parameters. Nonlinear Dyn. 55 (2009), 323-328. MR 2472222 | Zbl 1170.70401
[9] Lynnyk, V., Čelikovský, S.: On the anti-synchronization detection for the generalized Lorenz system and its applications to secure encryption. Kybernetika 46 (2010), 1, 1-18. MR 2666891 | Zbl 1190.93038
[10] Sun, K., Liu, X., Zhu, C., Sprott, J. C.: Hyperchaos and hyperchaos control of the sinusoidally forced simplified Lorenz system. Nonlinear Dyn. 69 (2012), 1383-1391. MR 2943392
[11] Wei, Z., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49 (2013), 2, 359-374. MR 3085401 | Zbl 1276.34043
[12] Effati, S., Nik, H. Saberi, Jajarmi, A.: Hyperchaos control of the hyperchaotic Chen system by optimal control design. Nonlinear Dyn. 73 (2013), 499-508. MR 3080686
[13] Effati, S., Saberi-Nadjafi, J., Nik, H. Saberi: Optimal and adaptive control for a kind of 3D chaotic and 4D hyper-chaotic systems. Appl. Math. Modell. 38 (2014), 759-774. DOI 10.1016/j.apm.2013.06.025 | MR 3141658
[14] Nik, H. Saberi, Golchaman, M.: Chaos control of a bounded 4D chaotic system. Neural Comput. Appl. (2013).
[15] Yu, S., Lu, J., Yu, X., Chen, G.: Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops. IEEE Trans. Circuits Syst. 59-I (2012), 5, 1015-1028. DOI 10.1109/TCSI.2011.2180429 | MR 2924533
[16] Lu, J., Yu, S., Leung, H., Chen, G.: Experimental verification of multidirectional multiscroll chaotic attractors. IEEE Trans. Circuits Syst. 53 (2006), 1, 149-165. DOI 10.1109/TCSI.2005.854412
[17] Wang, Z. H., Sun, Y. X., Qi, G. Y., Wyk, B. J.: The effects of fractional order on a 3-D quadratic autonomous system with four-wing attractor. Nonlinear Dyn. 62 (2010), 139-150. MR 2736983 | Zbl 1209.34060
[18] Cam, U.: A new high performance realization of mixed-mode chaotic circuit using current-feedback operational amplifiers. Comput. Electr. Engrg. 30 (2004), 4, 281-290. DOI 10.1016/j.compeleceng.2004.06.001 | Zbl 1057.94518
[19] Yu, S., Lü, J., Tang, W., Chen, G.: A general multiscroll Lorenz system family and its realization via digital signal processors. Chaos 16 (2006), 033126. DOI 10.1063/1.2336739 | Zbl 1151.94432
[20] Pehlivan, I., Uyaroglu, Y.: Rikitake attractor and its synchronization application for secure communication systems. J. Appl. Sci. 7 (2007), 7, 232-236. DOI 10.3923/jas.2007.232.236
[21] Pehlivan, I., Uyaroglu, Y.: A new 3D chaotic system with golden proportion equilibria: Analysis and electronic circuit realization. Comput. Electr. Engrg. 38 (2012), 6, 1777-1784. DOI 10.1016/j.compeleceng.2012.08.007
[22] Kirk, D. E.: Optimal Control Theory: An Introduction. Prentice-Hall, 1970.
[23] Zhong, W., Stefanovski, J., Dimirovski, G., Zhao, J.: Decentralized control and synchronization of time-varying complex dynamical network. Kybernetika 45 (2009), 151-167. MR 2489586 | Zbl 1158.34332
[24] Chen, Y., Lu, J., Lin, Z.: Consensus of discrete-time multi-agent systems with transmission nonlinearity. Automatica 49 (2013), 6, 1768-1775. DOI 10.1016/j.automatica.2013.02.021 | MR 3049226
[25] Lu, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Automat. Control 50 (2005), 6, 841-846. DOI 10.1109/TAC.2005.849233 | MR 2142000
[26] Zhou, J., Lu, J., Lu, J.: Pinning adaptive synchronization of a general complex dynamical network. Automatica 44 (2008), 4, 996-1003. DOI 10.1016/j.automatica.2007.08.016 | MR 2530942 | Zbl 1158.93339
[27] He, P., Ma, S. H., Fan, T.: Finite-time mixed outer synchronization of complex networks with coupling time-varying delay. Chaos 22 (2012), 4, 043151. DOI 10.1063/1.4773005
[28] He, P., Jing, C. G., Fan, T., Chen, C. Z.: Robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties. Complexity 19 (2014), 10-26. DOI 10.1002/cplx.21472 | MR 3158431
[29] He, P., Jing, C. G., Chen, C. Z., Fan, T., Nik, H. Saberi: Synchronization of general complex networks via adaptive control schemes. J. Phys. 82 (2014), 3, 499-514.
Partner of
EuDML logo