Previous |  Up |  Next

Article

Title: Positivity of Green's matrix of nonlocal boundary value problems (English)
Author: Domoshnitsky, Alexander
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 139
Issue: 4
Year: 2014
Pages: 621-638
Summary lang: English
.
Category: math
.
Summary: We propose an approach for studying positivity of Green's operators of a nonlocal boundary value problem for the system of $n$ linear functional differential equations with the boundary conditions $n_{i}x_{i}-\sum \nolimits _{j=1}^{n}m_{ij}x_{j}=\beta _{i}$, $i=1,\dots ,n$, where $n_{i}$ and $m_{ij}$ are linear bounded “local” and “nonlocal“ functionals, respectively, from the space of absolutely continuous functions. For instance, $n_{i}x_{i}=x_{i}(\omega )$ or $n_{i}x_{i}=x_{i}(0)-x_{i}(\omega )$ and $m_{ij}x_{j}=\int _{0}^{\omega }k(s)x_{j}(s) {\rm d} s +\sum \nolimits _{r=1}^{n_{ij}}c_{ijr}x_{j}(t_{ijr})$ can be considered. It is demonstrated that the positivity of Green's operator of nonlocal problem follows from the positivity of Green's operator for auxiliary “local” problem which consists of a “close” equation and the local conditions $n_{i}x_{i}=\alpha _{i}$, $i=1,\dots ,n.$ (English)
Keyword: functional differential equation
Keyword: nonlocal boundary value problem
Keyword: positivity of Green's operator
Keyword: fundamental matrix
Keyword: differential inequalities
MSC: 34B27
MSC: 34B40
MSC: 34K06
MSC: 34K10
idZBL: Zbl 06433686
idMR: MR3306852
DOI: 10.21136/MB.2014.144139
.
Date available: 2015-02-04T09:19:50Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144139
.
Reference: [1] Agarwal, R. P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications.Springer, New York (2012). Zbl 1253.34002, MR 2908263
Reference: [2] Agarwal, R. P., Domoshnitsky, A.: On positivity of several components of solution vector for systems of linear functional differential equations.Glasg. Math. J. 52 (2010), 115-136. Zbl 1200.34073, MR 2587821, 10.1017/S0017089509990218
Reference: [3] Agarwal, R. P., O'Regan, D.: Upper and lower solutions for singular problems with nonlinear boundary data.NoDEA, Nonlinear Differ. Equ. Appl. 9 (2002), 419-440. Zbl 1025.34019, MR 1941266, 10.1007/PL00012607
Reference: [4] Azbelev, N., Maksimov, V., Rakhmatullina, L.: Introduction to the Theory of Linear Functional Differential Equations.Advanced Series in Mathematical Science and Engineering 3 World Federation Publishers Company, Atlanta (1995). Zbl 0867.34051, MR 1422013
Reference: [5] Baxley, J. V.: A singular nonlinear boundary value problem: membrane response of a spherical cap.SIAM J. Appl. Math. 48 (1988), 497-505. Zbl 0642.34014, MR 0941097, 10.1137/0148028
Reference: [6] Bolojan-Nica, O., Infante, G., Precup, R.: Existence results for systems with coupled nonlocal initial conditions.Nonlinear Anal., Theory Methods Appl., Ser. A 94 (2014), 231-242. Zbl 1288.34019, MR 3120688, 10.1016/j.na.2013.08.019
Reference: [7] Cabada, A.: An overview of the lower and upper solutions method with nonlinear boundary value conditions.Bound. Value Probl. 2011 (2011), Article ID 893753, 18 pages. Zbl 1230.34001, MR 2719294
Reference: [8] Domoshnitsky, A.: Maximum principles and nonoscillation intervals for first order Volterra functional differential equations.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 15 (2008), 769-814. MR 2469306
Reference: [9] Feller, W.: Diffusion processes in one dimension.Trans. Amer. Math. Soc. 77 (1954), 1-31. Zbl 0059.11601, MR 0063607, 10.1090/S0002-9947-1954-0063607-6
Reference: [10] Graef, J. R., Henderson, J., Yang, B.: Existence and nonexistence of positive solutions of an $n$-th order nonlocal boundary value problem.Dynamic Systems and Applications 5 G. S. Ladde et al. Atlanta, GA (2008), 86-191. Zbl 1203.34026, MR 2468138
Reference: [11] Graef, J. R., Yang, B.: Positive solutions of a third order nonlocal boundary value problem.Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89-97. Zbl 1153.34014, MR 2375585
Reference: [12] Guidotti, P., Merino, S.: Gradual loss of positivity and hidden invariant cones in a scalar heat equation.Differ. Integral Equ. 13 (2000), 1551-1568. Zbl 0983.35013, MR 1787081
Reference: [13] Hakl, R., Lomtatidze, A., Šremr, J.: Some Boundary Value Problems for First Order Scalar Functional Differential Equations.Folia, Mathematica 10 Masaryk University, Brno (2002). Zbl 1048.34004, MR 1909595
Reference: [14] Infante, G.: Positive solutions of some nonlinear BVPs involving singularities and integral BCs.Discrete Contin. Dyn. Syst., Ser. S 1 (2008), 99-106. MR 2375586, 10.3934/dcdss.2008.1.99
Reference: [15] Infante, G., Minhós, F. M., Pietramala, P.: Non-negative solutions of systems of ODEs with coupled boundary conditions.Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4952-4960. Zbl 1280.34026, MR 2960289, 10.1016/j.cnsns.2012.05.025
Reference: [16] Infante, G., Webb, J. R. L.: Nonlinear non-local boundary-value problems and perturbed Hammerstein integral equations.Proc. Edinb. Math. Soc. 49 (2006), 637-656. Zbl 1115.34026, MR 2266153, 10.1017/S0013091505000532
Reference: [17] Kiguradze, I., Půža, B.: On boundary value problems for systems of linear functional differential equations.Czech. Math. J. 47 (1997), 341-373. Zbl 0930.34047, MR 1452425, 10.1023/A:1022829931363
Reference: [18] Kiguradze, I., Půža, B.: Boundary Value Problems for Systems of Linear Functional Differential Equations.Folia, Mathematica 12 Masaryk University, Brno (2003). Zbl 1161.34300, MR 2001509
Reference: [19] Krasnosel'skij, M. A., Vainikko, G. M., Zabreiko, P. P., Rutitskij, Ya. B., Stetsenko, V. Ya.: Approximate Solution of Operator Equations.Russian Nauka, Moskva (1969). MR 0259635
Reference: [20] O'Regan, D.: Upper and lower solutions for singular problems arising in the theory of membrane response of a spherical cap.Nonlinear Anal., Theory Methods Appl., Ser. A 47 (2001), 1163-1174. Zbl 1042.34523, MR 1970727, 10.1016/S0362-546X(01)00255-3
Reference: [21] Precup, R., Trif, D.: Multiple positive solutions of non-local initial value problems for first order differential systems.Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 5961-5970. Zbl 1245.34026, MR 2948310, 10.1016/j.na.2012.06.008
Reference: [22] Sommerfeld, A.: Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssig-keitsbewegungen.German Atti del IV Congresso Internazionale dei Matematici 3 Roma (1909), 116-124.
Reference: [23] Tchaplygin, S.: New Method of Approximate Integration of Differential Equations.GTTI, Moskva (1932), Russion.
Reference: [24] Webb, J. R. L.: Multiple positive solutions of some nonlinear heat flow problems.Discrete Contin. Dyn. Syst., suppl. (2005), 895-903. Zbl 1161.34007, MR 2192752
Reference: [25] Webb, J. R. L.: Optimal constants in a nonlocal boundary value problem.Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), 672-685. Zbl 1153.34320, MR 2188140, 10.1016/j.na.2005.02.055
Reference: [26] Webb, J. R. L., Infante, G.: Positive solutions of nonlocal boundary value problems: a unified approach.J. Lond. Math. Soc., II. Ser. 74 (2006), 673-693. Zbl 1115.34028, MR 2286439, 10.1112/S0024610706023179
Reference: [27] Webb, J. R. L., Infante, G.: Positive solutions of nonlocal boundary value problems involving integral conditions.NoDEA, Nonlinear Differ. Equ. Appl. 15 (2008), 45-67. Zbl 1148.34021, MR 2408344, 10.1007/s00030-007-4067-7
Reference: [28] Yang, Z.: Positive solutions of a second-order integral boundary value problem.J. Math. Anal. Appl. 321 (2006), 751-765. Zbl 1106.34014, MR 2241153, 10.1016/j.jmaa.2005.09.002
.

Files

Files Size Format View
MathBohem_139-2014-4_7.pdf 296.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo