Previous |  Up |  Next

Article

Keywords:
Hopf $\pi $-algebra; $H$-$\pi $-modules; braided monoidal category; braided monoidal functor
Summary:
Let $\pi $ be a group, and $H$ be a semi-Hopf $\pi $-algebra. We first show that the category $_H{\mathcal M}$ of left $\pi $-modules over $H$ is a monoidal category with a suitably defined tensor product and each element $\alpha $ in $\pi $ induces a strict monoidal functor $F_{\alpha }$ from $_H{\mathcal M}$ to itself. Then we introduce the concept of quasitriangular semi-Hopf $\pi $-algebra, and show that a semi-Hopf $\pi $-algebra $H$ is quasitriangular if and only if the category $_H\mathcal M$ is a braided monoidal category and $F_{\alpha }$ is a strict braided monoidal functor for any $\alpha \in \pi $. Finally, we give two examples of Hopf $\pi $-algebras and describe the categories of modules over them.
References:
[1] Chen, H.: Cocycle deformations, braided monoidal categories and quasitriangularity. Chin. Sci. Bull. 44 (1999), 510-513. DOI 10.1007/BF02885536 | MR 1708131 | Zbl 1008.16037
[2] Chen, H., Oystaeyen, F. Van, Zhang, Y.: The Green rings of Taft algebras. Proc. Am. Math. Soc. 142 (2014), 765-775. DOI 10.1090/S0002-9939-2013-11823-X | MR 3148512
[3] Cibils, C.: A quiver quantum group. Commun. Math. Phys. 157 (1993), 459-477. DOI 10.1007/BF02096879 | MR 1243707 | Zbl 0806.16039
[4] Drinfel'd, V. G.: Quantum Groups. Proc. Int. Congr. Math. 1; Berkeley/Calif., 1986, Providence 798-820 (1987), (A. M. Gleason, ed.). MR 0934283 | Zbl 0667.16003
[5] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155 Springer, New York (1995). MR 1321145 | Zbl 0808.17003
[6] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Proc. Conf. on Hopf algebras and their actions on rings, Chicago, USA, 1992 CBMS Regional Conference Series in Mathematics 82 AMS, Providence (1993). MR 1243637 | Zbl 0793.16029
[7] Sweedler, M. E.: Hopf Algebras. Mathematics Lecture Note Series W. A. Benjamin, New York (1969). MR 0252485 | Zbl 0203.31601
[8] Turaev, V.: Crossed group-categories. Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. MR 2500054 | Zbl 1185.18009
[9] Turaev, V.: Homotopy field theory in dimension 3 and crossed group-categories. ArXiv: math/0005291v1 [math.GT] (2000).
[10] Virelizier, A.: Hopf group-coalgebras. J. Pure Appl. Algebra 171 (2002), 75-122. DOI 10.1016/S0022-4049(01)00125-6 | MR 1903398 | Zbl 1011.16023
[11] Wang, S.-H.: Coquasitriangular Hopf group algebras and Drinfel'd co-doubles. Commun. Algebra 35 (2007), 77-101. DOI 10.1080/00927870601041334 | MR 2287553 | Zbl 1139.16029
[12] Yetter, D. N.: Quantum groups and representations of monoidal categories. Math. Proc. Camb. Philos. Soc. 108 (1990), 261-290. DOI 10.1017/S0305004100069139 | MR 1074714 | Zbl 0712.17014
[13] Zhu, M., Chen, H., Li, L.: Coquasitriangular Hopf group coalgebras and braided monoidal categories. Front. Math. China 6 (2011), 1009-1020. DOI 10.1007/s11464-011-0152-7 | MR 2836864 | Zbl 1229.16024
[14] Zhu, M., Chen, H., Li, L.: Quasitriangular Hopf group coalgebras and braided monoidal categories. Arab. J. Sci. Eng. 36 (2011), 1063-1070. DOI 10.1007/s13369-011-0086-0 | MR 2845533
Partner of
EuDML logo