[1] Becerra, H. M., López-Nicolás, G., Sagués, C.: 
A sliding-mode-control law for mobile robots based on epipolar visual servoing from three views. IEEE Trans. Robotics 27 (2011), 1, 175-183. 
DOI 10.1109/tro.2010.2091750[2] Benosman, M., Vey, G. Le: 
Stable inversion of SISO nonminimum phase linear systems through output planning: An experimental application to the one-link flexible manipulator. IEEE Trans. Control Systems Technol. 11 (2003), 4, 588-597. 
DOI 10.1109/tcst.2003.813372[3] Castillo, B.: Output tracking through singular points for a class of nonlinear SISO systems. In: Proc. First European Control Conference 1991, pp. 1496-1498.
[5] Devasia, S.: 
Should model-based inverse inputs be used as feedforward under Plant uncertainty?. IEEE Trans. Automat. Control 47 (2002), 11, 1865-1871. 
DOI 10.1109/tac.2002.804478 | 
MR 1937698[6] Fliess, M.: 
Generalized controller canonical form for linear and nonlinear dynamics. IEEE Trans. Automat. Control 35 (1990), 9, 994-1001. 
DOI 10.1109/9.58527 | 
MR 1065035[7] Hauser, J., Sastry, S., Kokotovic, P.: 
Nonlinear control via approximate input-output linearization: The Ball and Beam example. In: Proc. 28th Conference on Decision and Control 1989, pp. 1987-1993. 
DOI 10.1109/cdc.1989.70513 | 
MR 1148727[8] Hauser, J., Sastry, S., Kokotovic, P.: 
Nonlinear control via approximate input-output linearization: The Ball and Beam example. IEEE Trans. Automat. Control 35 (1992), 3, 392-398. 
DOI 10.1109/cdc.1989.70513 | 
MR 1148727[9] Herrero, P., Jaulin, L., Vehí, J., Sainz, M. A.: 
Guaranteed set-point computation with application to the control of a sailboat. Int. J. Control Automat. Systems 8 (2010), 1, 1-7. 
DOI 10.1007/s12555-010-0101-3[13] Krener, A.: 
Approximate linearization by state feedback. SIAM J. Control Optim. 25 (1987), 3, 547-557. 
Zbl 0555.93027[14] Lamnabhi-Lagarrigue, F., Crouch, P. E., Ighneiwa, I.: 
Tracking through singularities. In: New Trends in Control Theory, Lect. Notes in Control and Inform. Sci. Springer Berlin Heidelberg 122 (1989), pp. 44-53. 
DOI 10.1007/bfb0043016 | 
MR 1229764 | 
Zbl 0718.93023[18] Márton, L., Hodel, A. S., Lantos, B., Hung, J.: 
Underactuated robot control: Comparing LQR, subspace stabilization, and combined error metric approaches. IEEE Trans. Industr. Electron. 55 (2008), 10, 3724-3730. 
DOI 10.1109/tie.2008.923285[19] Perruquetti, W., Floquet, T.: 
Homogeneous finite time observer for nonlinear systems with linearizable error dynamics. In: Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007, pp. 12-14. 
DOI 10.1109/cdc.2007.4434702[20] Saif, M., Chen, W., Wu, Q.: 
High order sliding mode observers and differentiators - application to fault diagnosis problem. In: Modern Sliding Mode Control Theory, Lect. Notes in Control and Inform. Sci. Springer, Berlin - Heidelgerg 375 (2008) pp. 321-344. 
DOI 10.1007/978-3-540-79016-7_15 | 
MR 2454142 | 
Zbl 1145.93315[21] Sira-Ramirez, H.: 
The differential algebraic approach in nonlinear dynamical feedback controlled landing maneuvers. IEEE Trans. Automat. Control 37 (1992), 4, 518-524. 
DOI 10.1109/9.126590 | 
MR 1153118[23] Utkin, V., Gulden, J., Shi, J.: Sliding Modes in Electromechanical Systems. Taylor and Francis, London 1999.
[24] Yu, Z., Fan, G.: 
Jianqiang Yi. Indirect adaptive flight control based on nonlinear inversion. In: Proc. 2009 IEEE International Conference on Mechatronics and Automation 2009, pp. 3787-3792. 
DOI 10.1109/icma.2009.5246179