Previous |  Up |  Next

Article

Keywords:
isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere
Summary:
By $F_n(X)$, $n \geq 1$, we denote the $n$-th symmetric product of a metric space $(X,d)$ as the space of the non-empty finite subsets of $X$ with at most $n$ elements endowed with the Hausdorff metric $d_H$. In this paper we shall describe that every isometry from the $n$-th symmetric product $F_n(X)$ into itself is induced by some isometry from $X$ into itself, where $X$ is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the $n$-th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and present that the $2$nd symmetric product of the plane is bi-Lipschitz equivalent to the 4-dimensional Euclidean space.
References:
[1] Bandt C.: On the metric structure of hyperspaces with Hausdorff metric. Math. Nachr. 129 (1986), 175–183. DOI 10.1002/mana.19861290116 | MR 0864632 | Zbl 0609.54008
[2] Belobrov P.K.: The Čebyšev point of a system of sets. Izv. Vysš. Učebn. Zaved. Matematika 55 (1966), 18–24. MR 0208332 | Zbl 0192.22501
[3] Bestvina M.: $\mathbb R$-trees in Topology, Geometry, and Group Theory. Handbook of Geometric Topology, 55–91, North-Holland, Amsterdam, 2002. MR 1886668
[4] Borsuk K., Ulam S.: On symmetric products of topological spaces. Bull. Amer. Math. Soc. 37 (1931), 875–882. DOI 10.1090/S0002-9904-1931-05290-3 | MR 1562283 | Zbl 0003.22402
[5] Borsuk K.: On the third symmetric potency of the circumference. Fund. Math. 36 (1949), 236–244. MR 0035987 | Zbl 0039.19301
[6] Borovikova M., Ibragimov Z.: The third symmetric product of $ \mathbb R$. Comput. Methods Funct. Theory 9 (2009), 255–268. DOI 10.1007/BF03321726 | MR 2478275
[7] Borovikova M., Ibragimov Z., Yousefi H.: Symmetric products of the real line. J. Anal. 18 (2010), 53–67. MR 2850235 | Zbl 1239.30030
[8] Bott R.: On the third symmetric potency of $S_1$. Fund. Math. 39 (1952), 264–268. MR 0054954 | Zbl 0050.17801
[9] Bridson M.R., Haefliger A.: Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften, 319, Springer, Berlin, 1999. MR 1744486 | Zbl 0988.53001
[10] Chinen N., Koyama A.: On the symmetric hyperspace of the circle. Topology Appl. 157 (2010), 2613–2621. DOI 10.1016/j.topol.2010.07.012 | MR 2725354 | Zbl 1205.54018
[11] Foertsch T.: Isometries of spaces of convex compact subsets of globally non-positively Busemann curved spaces. Colloq. Math. 103 (2005), 71–84. DOI 10.4064/cm103-1-9 | MR 2148951 | Zbl 1077.53063
[12] Illanes A.: Nadler S.B., Jr. {\it Hyperspaces}, Marcel Dekker, New York, 1999. MR 1670250
[13] Ivanshin P.N., Sosov E.N.: Local Lipschitz property for the Chebyshev center mapping over N-nets. Mat. Vesnik 60 (2008), 9–22. MR 2403268 | Zbl 1199.54169
[14] Kovalev L.V.: Symmetric products of the line: embeddings and retractions. Proc. Amer. Math. Soc. 143 (2015), 801-809. DOI 10.1090/S0002-9939-2014-12280-5 | MR 3283666
[15] Molski R.: On symmetric product. Fund. Math. 44 (1957), 165–170. MR 0092953
[16] Morton H.R.: Symmetric product of the circle. Proc. Cambridge Philos. Soc. 63 (1967), 349–352. MR 0210096
[17] Valentine F.A.: Convex Sets. McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. MR 0170264 | Zbl 0333.52001
[18] Wu W.: Note sur les produits essentiels symétriques des espaces topologiques. C.R. Acad. Sci. Paris 224 (1947), 1139–1141. MR 0019914
Partner of
EuDML logo