Previous |  Up |  Next

Article

Title: Existence Results for a Fractional Boundary Value Problem via Critical Point Theory (English)
Author: Boucenna, A.
Author: Moussaoui, T.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 54
Issue: 1
Year: 2015
Pages: 47-64
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider the following boundary value problem \[ \left\lbrace \begin{array}{lll} D_{T^{-}}^{\alpha } (D_{0^{+}}^{\alpha } (D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha } u(t))) ) = f(t, u(t)), \quad t \in [0, T], \\ u(0)= u(T)= 0\\ D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha }u(0))= D_{T^{-}}^{\alpha }(D_{0^{+}}^{\alpha }u(T))= 0, \end{array} \right. \] where $0 < \alpha \le 1$ and $f\colon [0, T]\times \mathbb {R} \rightarrow \mathbb {R} $ is a continuous function, $D_{0^{+}}^{\alpha }$, $D_{T^{-}}^{\alpha }$ are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem. (English)
Keyword: Existence results
Keyword: fractional differential equation
Keyword: boundary value problem
Keyword: critical point theory
Keyword: minimization principle
Keyword: Mountain pass theorem
Keyword: Third order
Keyword: nonlinear differential equation
Keyword: uniform stability
Keyword: uniform ultimate boundedness
Keyword: periodic solutions
MSC: 26A33
MSC: 34B15
MSC: 58E05
idZBL: Zbl 1354.34013
idMR: MR3468600
.
Date available: 2015-09-01T08:58:50Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144367
.
Reference: [1] Jiao, F., Zhou, Y.: Existence results for fractional boundary value problem via critical point theory. International Journal of Bifurcation and Chaos 22, 1250086 (2012), 1–17. Zbl 1258.34015, MR 2926062, 10.1142/S0218127412500861
Reference: [2] Jiao, F., Zhou, Y.: Existence of solutions for a class of fractional boundary value problems via critical point theory. Computers and Mathematics with Applications 62 (2011), 1181–1199. Zbl 1235.34017, MR 2824707, 10.1016/j.camwa.2011.03.086
Reference: [3] Bai, C.: Infinitely many solutions for a perturbed nonlinear fractional boundary-value problem. Electonic Journal of Differential Equations 136 (2013), 1–12. Zbl 1295.34007, MR 3084616
Reference: [4] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Elsevier Science, Amsterdam, 2006. Zbl 1092.45003, MR 2218073
Reference: [5] Badiale, M., Serra, E.: Semilinear Elliptic Equations for Beginners. Springer-Verlag, New York, 2011. Zbl 1214.35025, MR 2722059
Reference: [6] Friedman, A.: Foundations of Modern Analysis. Dover Publications, New York, 1982. Zbl 0557.46001, MR 0663003
Reference: [7] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integral and Derivatives: Theory and Applications. Gordon and Breach, Newark, NJ, 1993. MR 1347689
Reference: [8] Diethlem, K.: The Analysis of Fractional Differential Equations. Springer, New York, 2010. MR 2680847
Reference: [9] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence, RI, 1986. Zbl 0609.58002, MR 0845785
Reference: [10] Mawhin, J., Willem, M.: Critical point theory and hamiltonian systems. Springer, New York, 1989. Zbl 0676.58017, MR 0982267
Reference: [11] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, 1999. Zbl 0924.34008, MR 1658022
Reference: [12] Brezis, H.: Analyse fonctionnelle, théorie et applications. Massons, Paris, 1983. Zbl 0511.46001, MR 0697382
.

Files

Files Size Format View
ActaOlom_54-2015-1_4.pdf 359.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo