[4] Balázsová, M., Feistauer, M., Hadrava, M., Kosík, A.: On the stability of the space-time discontinuous Galerkin method for the numerical solution of nonstationary nonlinear convection-diffusion problems. (to appear) in J. Numer. Math.
[5] Bassi, F., Rebay, S.:
A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997), 267-279.
DOI 10.1006/jcph.1996.5572 |
MR 1433934 |
Zbl 0871.76040
[9] Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.:
Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equations 16 (2000), 365-378.
DOI 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y |
MR 1765651 |
Zbl 0957.65099
[10] Česenek, J., Feistauer, M.:
Theory of the space-time discontinuous Galerkin method for nonstationary parabolic problems with nonlinear convection and diffusion. SIAM J. Numer. Anal. 50 (2012), 1181-1206.
DOI 10.1137/110828903 |
MR 2970739 |
Zbl 1312.65157
[11] Česenek, J., Feistauer, M., Horáček, J., Kučera, V., Prokopová, J.:
Simulation of compressible viscous flow in time-dependent domains. Appl. Math. Comput. 219 (2013), 7139-7150.
DOI 10.1016/j.amc.2011.08.077 |
MR 3030556
[15] Dolejší, V.:
On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations. Int. J. Numer. Methods Fluids 45 (2004), 1083-1106.
DOI 10.1002/fld.730 |
MR 2072224 |
Zbl 1060.76570
[16] Dolejší, V., Feistauer, M.:
Discontinuous Galerkin Method---Analysis and Applications to Compressible Flow. Springer, Heidelberg (2015).
MR 3363720
[18] Donea, J., Giuliani, S., Halleux, J. P.:
An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33 (1982), 689-723.
DOI 10.1016/0045-7825(82)90128-1 |
Zbl 0508.73063
[19] Eriksson, K., Estep, D., Hansbo, P., Johnson, C.:
Computational differential equations. Cambridge Univ. Press, Cambridge (1996).
MR 1414897 |
Zbl 0946.65049
[22] Feistauer, M., Felcman, J., Straškraba, I.:
Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation Oxford University Press, Oxford (2003).
MR 2261900 |
Zbl 1028.76001
[24] Feistauer, M., Hasnedlová-Prokopová, J., Horáček, J., Kosík, A., Kučera, V.:
DGFEM for dynamical systems describing interaction of compressible fluid and structures. J. Comput. Appl. Math. 254 (2013), 17-30.
DOI 10.1016/j.cam.2013.03.028 |
MR 3061063 |
Zbl 1290.65089
[27] Feistauer, M., Kučera, V., Prokopová, J.:
Discontinuous Galerkin solution of compressible flow in time-dependent domains. Math. Comput. Simul. 80 (2010), 1612-1623.
DOI 10.1016/j.matcom.2009.01.020 |
MR 2647255
[28] Formaggia, L., Nobile, F.:
A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7 (1999), 105-131.
MR 1699243 |
Zbl 0942.65113
[29] Gastaldi, L.:
A priori error estimates for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 9 (2001), 123-156.
MR 1836870 |
Zbl 0988.65082
[30] Hasnedlová, J., Feistauer, M., Horáček, J., Kosík, A., Kučera, V.:
Numerical simulation of fluid-structure interaction of compressible flow and elastic structure. Computing 95 (2013), S343--S361.
DOI 10.1007/s00607-012-0240-x |
MR 3054377
[31] Havle, O., Dolejší, V., Feistauer, M.:
Discontinuous Galerkin method for nonlinear convection-diffusion problems with mixed Dirichlet-Neumann boundary conditions. Appl. Math., Praha 55 (2010), 353-372.
DOI 10.1007/s10492-010-0012-x |
MR 2737717 |
Zbl 1224.65219
[35] Schötzau, D.:
hp-DGFEM for Parabolic Evolution Problems. Applications to Diffusion and Viscous Incompressible Fluid Flow. PhD Thesis, ETH No. 13041, Zürich (1999).
MR 2715264
[36] Schötzau, D., Schwab, C.:
An $hp$ a priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37 (2000), 207-232.
DOI 10.1007/s100920070002 |
MR 1812787
[37] Thomée, V.:
Galerkin Finite Element Methods for Parabolic Problems. Springer Series in Computational Mathematics 25 Springer, Berlin (2006).
MR 2249024 |
Zbl 1105.65102