Previous |  Up |  Next

Article

Title: Existence and multiplicity of solutions for a $p(x)$-Kirchhoff type problem via variational techniques (English)
Author: Mokhtari, A.
Author: Moussaoui, T.
Author: O’Regan, D.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 3
Year: 2015
Pages: 163-173
Summary lang: English
.
Category: math
.
Summary: This paper discusses the existence and multiplicity of solutions for a class of $p(x)$-Kirchhoff type problems with Dirichlet boundary data of the following form \[ {\left\rbrace \begin{array}{ll} -\Big (a+b\int _{\Omega }\frac{1}{p(x)}|\nabla u|^{p(x)}\; dx\Big )\textrm{div}\big (|\nabla u|^{p(x)-2 } \nabla u\big )= f(x,u)\,, & in \quad \Omega \\[6pt] u=0 & on \quad \partial \Omega\,, \end{array}\right.} \] where $\Omega $ is a smooth open subset of $\mathbb{R}^N$ and $p\in C(\overline{\Omega })$ with $N <p^-= \inf _{x\in \Omega } p(x)\le p^+= \sup _{x\in \Omega } p(x)<+\infty $, $a$, $b$ are positive constants and $f\colon \overline{\Omega }\times \mathbb{R}\rightarrow \mathbb{R}$ is a continuous function. The proof is based on critical point theory and variable exponent Sobolev space theory. (English)
Keyword: existence results
Keyword: genus theory
Keyword: nonlocal problems Kirchhoff equation
Keyword: critical point theory
MSC: 34B27
MSC: 35B05
MSC: 35J60
idZBL: Zbl 06487028
idMR: MR3397269
DOI: 10.5817/AM2015-3-163
.
Date available: 2015-09-09T09:46:37Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144427
.
Reference: [1] Ambrosetti, A., Malchiodi, A.: Nonlinear analysis and semilinear elliptic problems.Cambridge Stud. Adv. Math., vol. 14, Cambridge Univ. Press, 2007. Zbl 1125.47052, MR 2292344
Reference: [2] Antontsev, S.N., Rodrigues, J.F.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions.Nonlinear Anal. (2005), 515–545. MR 2103951
Reference: [3] Antontsev, S.N., Rodrigues, J.F.: On stationary thermo-rheological viscous flows.Ann. Univ. Ferrara Sez. VII (N.S.) 52 (2006), 19–36. Zbl 1117.76004, MR 2246902
Reference: [4] Castro, A.: Metodos variacionales y analisis functional no linear.X Colóquio Colombiano de Matematicas, 1980.
Reference: [5] Clarke, D.C.: A variant of the Lusternik-Schnirelman theory.Indiana Univ. Math. J. 22 (1972), 65–74. MR 0296777, 10.1512/iumj.1973.22.22008
Reference: [6] Corrêa, F.J.S.A., Figueiredo, G.M.: On an elliptic equation of p-Kirchhoff-type via variational methods.Bull. Austral. Math. Soc. 74 (2006), 263–277. Zbl 1108.45005, MR 2260494, 10.1017/S000497270003570X
Reference: [7] Corrêa, F.J.S.A., Figueiredo, G.M.: On a p-Kirchhoff equation via Krasnoselskii’s genus.Appl. Math. Lett. 22 ('2009), 819–822. Zbl 1171.35371, MR 2523587, 10.1016/j.aml.2008.06.042
Reference: [8] Dai, G., Wei, J.: Infinitely many non-negative solutions for a $p(x)$-Kirchhoff-type problem with Dirichlet boundary condition.Nonlinear Anal. 73 (2010), 3420–3430. Zbl 1201.35181, MR 2680035, 10.1016/j.na.2010.07.029
Reference: [9] Diening, L., Harjulehto, P., Hast"o, P., Ružička, M.: Lebesgue and Sobolev spaces with variable exponents.Lecture Notes in Math., vol. 2017, Springer, New York, 2011. MR 2790542
Reference: [10] Fan, X.L., Zhao, D.: On the spaces $L^{p(x)}$ and $W^{m,p(x)}$.J. Math. Anal. Appl. 263 (2001), 424–446. MR 1866056
Reference: [11] Kavian, O.: ‘Introduction ‘a la théorie des points critiques et applications aux problémes elliptiques.Springer-Verlag, 1993. Zbl 0797.58005
Reference: [12] Kirchhoff, G.: Mechanik.Teubner, Leipzig, Germany, 1883.
Reference: [13] Krasnoselskii, M.A.: Topological methods in the theory of nonlinear integral equations.MacMillan, New York, 1964. MR 0159197
Reference: [14] Peral, I.: Multiplicity of solutions for the p-Laplacian.Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997.
Reference: [15] Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations.Conference Board of the Mathematical Sciences, by the American Mathematical Society, Providence, Rhode Island, 1984. MR 0845785
Reference: [16] Ružička, M.: Electro-rheological Fluids: Modeling and Mathematical Theory.Springer-Verlag, Berlin, 2000. MR 1788852
Reference: [17] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators.North-Holland, Amsterdam, 1978. Zbl 0387.46033, MR 0503903
Reference: [18] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory.Math. USSR Izv. 9 (1987), 33–66. Zbl 0599.49031, MR 0864171, 10.1070/IM1987v029n01ABEH000958
.

Files

Files Size Format View
ArchMathRetro_051-2015-3_4.pdf 518.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo