Previous |  Up |  Next

Article

Keywords:
$(n,d)$-injective modules; $(n,d)$-flat modules; $n$-coherent rings
Summary:
Let $n,d$ be two non-negative integers. A left $R$-module $M$ is called $(n,d)$-injective, if ${\rm Ext}^{d+1}(N, M)=0$ for every $n$-presented left $R$-module $N$. A right $R$-module $V$ is called $(n,d)$-flat, if ${\rm Tor}_{d+1}(V, N)=0$ for every $n$-presented left $R$-module $N$. A left $R$-module $M$ is called weakly $n$-$FP$-injective, if ${\rm Ext}^n(N, M)=0$ for every $(n+1)$-presented left $R$-module $N$. A right $R$-module $V$ is called weakly $n$-flat, if ${\rm Tor}_n(V, N)=0$ for every $(n+1)$-presented left $R$-module $N$. In this paper, we give some characterizations and properties of $(n,d)$-injective modules and $(n,d)$-flat modules in the cases of $n\geq d+1$ or $n> d+1$. Using the concepts of weakly $n$-$FP$-injectivity and weakly $n$-flatness of modules, we give some new characterizations of left $n$-coherent rings.
References:
[1] Chen J.L., Ding N.Q.: On $n$-coherent rings. Comm. Algebra 24 (1996), 3211–3216. DOI 10.1080/00927879608825742 | MR 1402554 | Zbl 0877.16010
[2] D.L. Costa: Parameterizing families of non-noetherian rings. Comm. Algebra 22 (1994), no. 10, 3997–4011. DOI 10.1080/00927879408825061 | MR 1280104 | Zbl 0814.13010
[3] Enochs E.E., Jenda O.M.G.: Relative Homological Algebra. Walter de Gruyter, Berlin-New York, 2000. MR 1753146 | Zbl 0952.13001
[4] Holm H., Jørgensen P.: Covers, precovers, and purity. Illinois J. Math. 52 (2008), 691–703. MR 2524661 | Zbl 1189.16007
[5] Megibben C.: Absolutely pure modules. Proc. Amer.Math. Soc. 26 (1970), 561–566. DOI 10.1090/S0002-9939-1970-0294409-8 | MR 0294409 | Zbl 0216.33803
[6] Rada J., Saorin M.: Rings characterized by (pre)envelopes and (pre)covers of their modules. Comm. Algebra 26 (1998), 899–912. DOI 10.1080/00927879808826172 | MR 1606190 | Zbl 0908.16003
[7] Stenström B.: Coherent rings and FP-injective modules. J. London Math. Soc. 2 (1970), 323–329. DOI 10.1112/jlms/s2-2.2.323 | MR 0258888
[8] Zhou D.X.: On $n$-coherent rings and $(n,d)$-rings. Comm. Algebra 32 (2004), 2425–2441. DOI 10.1081/AGB-120037230 | MR 2100480 | Zbl 1089.16001
[9] Zhu Z.: On $n$-coherent rings, $n$-hereditary rings and $n$-regular rings. Bull. Iranian Math. Soc. 37 (2011), 251–267. MR 2915464 | Zbl 1277.16007
Partner of
EuDML logo