Previous |  Up |  Next

Article

Title: On the Nörlund means of Vilenkin-Fourier series (English)
Author: Blahota, István
Author: Persson, Lars-Erik
Author: Tephnadze, Giorgi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 983-1002
Summary lang: English
.
Category: math
.
Summary: We prove and discuss some new $( H_{p},L_{p})$-type inequalities of weighted maximal operators of Vilenkin-Nörlund means with non-increasing coefficients $\{q_{k}\colon k\geq 0\} $. These results are the best possible in a special sense. As applications, some well-known as well as new results are pointed out in the theory of strong convergence of such Vilenkin-Nörlund means. To fulfil our main aims we also prove some new estimates of independent interest for the kernels of these summability results. \endgraf In the special cases of general Nörlund means $t_{n}$ with non-increasing coefficients analogous results can be obtained for Fejér and Cesàro means by choosing the generating sequence $\{ q_{k}\colon k\geq 0\}$ in an appropriate way. (English)
Keyword: Vilenkin system
Keyword: Vilenkin group
Keyword: Nörlund means
Keyword: martingale Hardy space
Keyword: maximal operator
Keyword: Vilenkin-Fourier series
Keyword: strong convergence
Keyword: inequality
MSC: 42B25
MSC: 42C10
idZBL: Zbl 06537705
idMR: MR3441330
DOI: 10.1007/s10587-015-0222-1
.
Date available: 2016-01-13T09:13:04Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144787
.
Reference: [1] Blahota, I.: On a norm inequality with respect to Vilenkin-like systems.Acta Math. Hung. 89 (2000), 15-27. Zbl 0973.42020, MR 1912235, 10.1023/A:1026769207159
Reference: [2] Blahota, I.: Relation between Dirichlet kernels with respect to Vilenkin-like systems.Acta Acad. Paedagog. Agriensis, Sect. Mat. (N.S.) 22 (1994), 109-114. Zbl 0882.42017
Reference: [3] Blahota, I., Gát, G.: Norm summability of Nörlund logarithmic means on unbounded Vilenkin groups.Anal. Theory Appl. 24 (2008), 1-17. Zbl 1164.42022, MR 2422455, 10.1007/s10496-008-0001-z
Reference: [4] Blahota, I., Tephnadze, G.: On the {$(C,\alpha)$}-means with respect to the Walsh system.Anal. Math. 40 (2014), 161-174. Zbl 1313.42083, MR 3240221, 10.1007/s10476-014-0301-9
Reference: [5] Blahota, I., Tephnadze, G.: Strong convergence theorem for Vilenkin-Fejér means.Publ. Math. Debrecen 85 (2014), 181-196. MR 3231514, 10.5486/PMD.2014.5896
Reference: [6] Fujii, N.: A maximal inequality for {$H^1$}-functions on a generalized Walsh-Paley group.Proc. Am. Math. Soc. 77 (1979), 111-116. MR 0539641
Reference: [7] G{á}t, G.: Cesàro means of integrable functions with respect to unbounded Vilenkin systems.J. Approx. Theory 124 (2003), 25-43. Zbl 1032.43003, MR 2010779, 10.1016/S0021-9045(03)00075-3
Reference: [8] G{á}t, G.: Investigations of certain operators with respect to the Vilenkin system.Acta Math. Hung. 61 (1993), 131-149. Zbl 0805.42019, MR 1200968, 10.1007/BF01872107
Reference: [9] Gát, G., Goginava, U.: Almost everywhere convergence of {$(C,\alpha)$}-means of quadratical partial sums of double Vilenkin-Fourier series.Georgian Math. J. 13 (2006), 447-462. Zbl 1107.42006, MR 2271060
Reference: [10] Gát, G., Goginava, U.: Uniform and {$L$}-convergence of logarithmic means of Walsh-Fourier series.Acta Math. Sin., Engl. Ser. 22 (2006), 497-506. MR 2214371, 10.1007/s10114-005-0648-8
Reference: [11] Gát, G., Nagy, K.: On the logarithmic summability of Fourier series.Georgian Math. J. 18 (2011), 237-248. Zbl 1221.42049, MR 2805978
Reference: [12] Goginava, U.: Weak type inequality for the maximal operator of the {$(C,\alpha)$} means of two-dimensional Walsh-Fourier series.Anal. Math. 36 (2010), 1-31. MR 2606574, 10.1007/s10476-010-0101-9
Reference: [13] Goginava, U.: Maximal operators of Fejér-Walsh means.Acta Sci. Math. 74 (2008), 615-624. Zbl 1199.42127, MR 2487936
Reference: [14] Goginava, U.: The maximal operator of Marcinkiewicz-Fejér means of the {$d$}-dimensional Walsh-Fourier series.East J. Approx. 12 (2006), 295-302. MR 2252557
Reference: [15] Goginava, U.: The maximal operator of the {$(C,\alpha)$} means of the Walsh-Fourier series.Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 26 (2006), 127-135. Zbl 1121.42020, MR 2388683
Reference: [16] Goginava, U.: Almost everywhere convergence of subsequence of logarithmic means of Walsh-Fourier series.Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 21 (2005), 169-175. Zbl 1093.42018, MR 2162613
Reference: [17] Goginava, U.: On the approximation properties of Cesàro means of negative order of Walsh-Fourier series.J. Approx. Theory 115 (2002), 9-20. Zbl 0998.42018, MR 1888974, 10.1006/jath.2001.3632
Reference: [18] Moore, C. N.: Summable Series and Convergence Factors.Dover Publications, New York (1966). Zbl 0142.30704, MR 0201863
Reference: [19] Móricz, F., Siddiqi, A. H.: Approximation by Nörlund means of Walsh-Fourier series.J. Approx. Theory 70 (1992), 375-389. Zbl 0757.42009, MR 1178380, 10.1016/0021-9045(92)90067-X
Reference: [20] Nagy, K.: Approximation by Nörlund means of double Walsh-Fourier series for Lipschitz functions.Math. Inequal. Appl. 15 (2012), 301-322. Zbl 1243.42038, MR 2962234
Reference: [21] Nagy, K.: Approximation by Nörlund means of Walsh-Kaczmarz-Fourier series.Georgian Math. J. 18 (2011), 147-162. Zbl 1210.42043, MR 2787349
Reference: [22] Nagy, K.: Approximation by Cesàro means of negative order of Walsh-Kaczmarz-Fourier series.East J. Approx. 16 (2010), 297-311. Zbl 1216.42006, MR 2789336
Reference: [23] Nagy, K.: Approximation by Nörlund means of quadratical partial sums of double Walsh-Fourier series.Anal. Math. 36 (2010), 299-319. Zbl 1240.42133, MR 2738323, 10.1007/s10476-010-0404-x
Reference: [24] Pál, J., Simon, P.: On a generalization of the concept of derivative.Acta Math. Acad. Sci. Hung. 29 (1977), 155-164. Zbl 0345.42011, MR 0450884, 10.1007/BF01896477
Reference: [25] Schipp, F.: Rearrangements of series in the Walsh system.Math. Notes 18 (1976), 701-706 translation from\kern 3sp Mat. Zametki 18 (1975), 193-201. MR 0390633
Reference: [26] Simon, P.: Cesàro summability with respect to two-parameter Walsh systems.Monatsh. Math. 131 (2000), 321-334. MR 1813992, 10.1007/s006050070004
Reference: [27] Simon, P.: Strong convergence theorem for Vilenkin-Fourier series.J. Math. Anal. Appl. 245 (2000), 52-68. Zbl 0987.42022, MR 1756576, 10.1006/jmaa.2000.6732
Reference: [28] Simon, P.: Investigations with respect to the Vilenkin system.Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 27 (1984), 87-101. Zbl 0586.43001, MR 0823096
Reference: [29] Simon, P., Weisz, F.: Weak inequalities for Cesàro and Riesz summability of Walsh-Fourier series.J. Approx. Theory 151 (2008), 1-19. Zbl 1143.42032, MR 2403893, 10.1016/j.jat.2007.05.004
Reference: [30] Tephnadze, G.: On the maximal operators of Riesz logarithmic means of Vilenkin-Fourier series.Stud. Sci. Math. Hung. 51 (2014), 105-120. Zbl 1299.42098, MR 3188506
Reference: [31] Tephnadze, G.: On the partial sums of Vilenkin-Fourier series.J. Contemp. Math. Anal. 49 23-32 Russian (2014). MR 3237573, 10.3103/S1068362314010038
Reference: [32] Tephnadze, G.: Strong convergence theorems for Walsh-Fejér means.Acta Math. Hung. 142 (2014), 244-259. Zbl 1313.42086, MR 3158862, 10.1007/s10474-013-0361-5
Reference: [33] Tephnadze, G.: On the maximal operators of Vilenkin-Fejér means on Hardy spaces.Math. Inequal. Appl. 16 (2013), 301-312. Zbl 1263.42008, MR 3060398
Reference: [34] Tephnadze, G.: On the maximal operators of Vilenkin-Fejér means.Turk. J. Math. 37 (2013), 308-318. Zbl 1278.42037, MR 3040854
Reference: [35] Tephnadze, G.: A note on the Fourier coefficients and partial sums of Vilenkin-Fourier series.Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 28 (2012), 167-176. Zbl 1289.42084, MR 3048092
Reference: [36] Tephnadze, G.: Fejér means of Vilenkin-Fourier series.Stud. Sci. Math. Hung. 49 (2012), 79-90. Zbl 1265.42099, MR 3059789
Reference: [37] Tephnadze, G.: The maximal operators of logarithmic means of one-dimensional Vilenkin-Fourier series.Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 27 (2011), 245-256. Zbl 1265.42100, MR 2880697
Reference: [38] Vilenkin, N. J.: On a class of complete orthonormal systems.Am. Math. Soc. Transl. Ser. (2), 28 (1963), 1-35 translation from\kern 3sp Izv. Akad. Nauk SSSR, Ser. Mat. 11 (1947), 363-400. Zbl 0036.35601, MR 0154042
Reference: [39] Weisz, F.: $\theta$-summability of Fourier series.Acta Math. Hung. 103 (2004), 139-176. Zbl 1060.42021, MR 2047878, 10.1023/B:AMHU.0000028241.87331.c5
Reference: [40] Weisz, F.: {$(C,\alpha)$} summability of Walsh-Fourier series.Anal. Math. 27 (2001), 141-155. Zbl 0992.42016, MR 1834858, 10.1023/A:1014364010470
Reference: [41] Weisz, F.: Cesàro summability of one- and two-dimensional Walsh-Fourier series.Anal. Math. 22 (1996), 229-242. Zbl 0866.42020, MR 1627638, 10.1007/BF02205221
Reference: [42] Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis.Lecture Notes in Mathematics 1568 Springer, Berlin (1994). Zbl 0796.60049, MR 1320508, 10.1007/BFb0073448
.

Files

Files Size Format View
CzechMathJ_65-2015-4_10.pdf 307.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo