Previous |  Up |  Next

Article

Keywords:
Signorini problem; augmented Lagrangian; fixed point; Steklov-Poincaré operator; boundary integral equation
Summary:
An augmented Lagrangian method, based on boundary variational formulations and fixed point method, is designed and analyzed for the Signorini problem of the Laplacian. Using the equivalence between Signorini boundary conditions and a fixed-point problem, we develop a new iterative algorithm that formulates the Signorini problem as a sequence of corresponding variational equations with the Steklov-Poincaré operator. Both theoretical results and numerical experiments show that the method presented is efficient.
References:
[1] Aitchison, J. M., Elliott, C. M., Ockendon, J. R.: Percolation in gently sloping beaches. IMA J. Appl. Math. 30 (1983), 269-287. DOI 10.1093/imamat/30.3.269 | MR 0719980 | Zbl 0536.76085
[2] Aitchison, J. M., Poole, M. W.: A numerical algorithm for the solution of Signorini problems. J. Comput. Appl. Math. 94 (1998), 55-67. DOI 10.1016/S0377-0427(98)00030-2 | MR 1638262 | Zbl 0937.74071
[3] Amdouni, S., Hild, P., Lleras, V., Moakher, M., Renard, Y.: A stabilized Lagrange multiplier method for the enriched finite-element approximation of contact problems of cracked elastic bodies. ESAIM, Math. Model. Numer. Anal. 46 (2012), 813-839. DOI 10.1051/m2an/2011072 | MR 2891471 | Zbl 1271.74354
[4] Auliac, S., Belhachmi, Z., Belgacem, F. Ben, Hecht, F.: Quadratic finite elements with non-matching grids for the unilateral boundary contact. ESAIM, Math. Model. Numer. Anal. 47 (2013), 1185-1205. DOI 10.1051/m2an/2012064 | MR 3082294
[5] Bustinza, R., Sayas, F.-J.: Error estimates for an LDG method applied to Signorini type problems. J. Sci. Comput. 52 (2012), 322-339. DOI 10.1007/s10915-011-9548-5 | MR 2948696 | Zbl 1311.74110
[6] Chouly, F.: An adaptation of Nitsche's method to the Tresca friction problem. J. Math. Anal. Appl. 411 (2014), 329-339. DOI 10.1016/j.jmaa.2013.09.019 | MR 3118488 | Zbl 1311.74112
[7] Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Scientific Computation Springer, Berlin (2008). MR 2423313 | Zbl 1139.65050
[8] Han, H. D.: A direct boundary element method for Signorini problems. Math. Comput. 55 (1990), 115-128. DOI 10.1090/S0025-5718-1990-1023048-7 | MR 1023048 | Zbl 0705.65084
[9] He, B. S., Liao, L. Z.: Improvements of some projection methods for monotone nonlinear variational inequalities. J. Optim. Theory Appl. 112 (2002), 111-128. DOI 10.1023/A:1013096613105 | MR 1881692 | Zbl 1025.65036
[10] Hsiao, G. C., Wendland, W. L.: Boundary Integral Equations. Applied Mathematical Sciences 164 Springer, Berlin (2008). MR 2441884 | Zbl 1157.65066
[11] Ito, K., Kunisch, K.: Semi-smooth Newton methods for the Signorini problem. Appl. Math., Praha 53 (2008), 455-468. DOI 10.1007/s10492-008-0036-7 | MR 2469587 | Zbl 1199.49064
[12] Karageorghis, A.: Numerical solution of a shallow dam problem by a boundary element method. Comput. Methods Appl. Mech. Eng. 61 (1987), 265-276. DOI 10.1016/0045-7825(87)90095-8 | MR 0885576 | Zbl 0597.76096
[13] Khoromskij, B. N., Wittum, G.: Numerical Solution of Elliptic Differential Equations by Reduction to the Interface. Lecture Notes in Computational Science and Engineering 36 Springer, Berlin (2004). DOI 10.1007/978-3-642-18777-3 | MR 2045003 | Zbl 1043.65128
[14] Li, F., Li, X.: The interpolating boundary element-free method for unilateral problems arising in variational inequalities. Math. Probl. Eng. 2014 (2014), Article ID 518727, 11 pages. MR 3170472
[15] Maischak, M., Stephan, E. P.: Adaptive $hp$-versions of BEM for Signorini problems. Appl. Numer. Math. 54 (2005), 425-449. DOI 10.1016/j.apnum.2004.09.012 | MR 2149362 | Zbl 1114.74062
[16] Mel'nyk, T. A., Nakvasiuk, I. A., Wendland, W. L.: Homogenization of the Signorini boundary-value problem in a thick junction and boundary integral equations for the homogenized problem. Math. Methods Appl. Sci. 34 (2011), 758-775. DOI 10.1002/mma.1395 | MR 2815766 | Zbl 1217.35019
[17] Noor, M. A.: Some developments in general variational inequalities. Appl. Math. Comput. 152 (2004), 199-277. MR 2050063 | Zbl 1134.49304
[18] Poullikkas, A., Karageorghis, A., Georgiou, G.: The method of fundamental solutions for Signorini problems. IMA J. Numer. Anal. 18 (1998), 273-285. DOI 10.1093/imanum/18.2.273 | MR 1617293 | Zbl 0901.73017
[19] Quarteroni, A., Valli, A.: Theory and application of Steklov-Poincaré operators for boundary-value problems. Applied and Industrial Mathematics, Proc. Symp. Venice, 1989 Mathematics and its Applications 56 Kluwer Acad. Publ., Dordrecht (1991), 179-203. MR 1147198 | Zbl 0723.65098
[20] Spann, W.: On the boundary element method for the Signorini problem of the Laplacian. Numer. Math. 65 (1993), 337-356. DOI 10.1007/BF01385756 | MR 1227026 | Zbl 0798.65106
[21] Stadler, G.: Path-following and augmented Lagrangian methods for contact problems in linear elasticity. J. Comput. Appl. Math. 203 (2007), 533-547. DOI 10.1016/j.cam.2006.04.017 | MR 2323060 | Zbl 1119.49028
[22] Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems. Finite and Boundary Elements. Springer, New York (2008). MR 2361676 | Zbl 1153.65302
[23] Steinbach, O.: Boundary element methods for variational inequalities. Numer. Math. 126 (2014), 173-197. DOI 10.1007/s00211-013-0554-4 | MR 3149076 | Zbl 1291.65193
[24] Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving the Signorini problem. IMA J. Numer. Anal. 31 (2011), 1754-1772. DOI 10.1093/imanum/drr010 | MR 2846774 | Zbl 1315.74021
[25] Zhang, S.: A projection iterative algorithm for the Signorini problem using the boundary element method. Eng. Anal. Bound. Elem. 50 (2015), 313-319. DOI 10.1016/j.enganabound.2014.08.012 | MR 3280499
[26] Zhang, S., Zhu, J.: A projection iterative algorithm boundary element method for the Signorini problem. Eng. Anal. Bound. Elem. 37 (2013), 176-181. DOI 10.1016/j.enganabound.2012.08.010 | MR 2999664 | Zbl 1352.65601
Partner of
EuDML logo