Previous |  Up |  Next

Article

Title: Generalizations of Milne's $U(n+1)$ $q$-Chu-Vandermonde summation (English)
Author: Fang, Jian-Ping
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 395-407
Summary lang: English
.
Category: math
.
Summary: We derive two identities for multiple basic hyper-geometric series associated with the unitary $U(n+1)$ group. In order to get the two identities, we first present two known $q$-exponential operator identities which were established in our earlier paper. From the two identities and combining them with the two $U(n+1)$ $q$-Chu-Vandermonde summations established by Milne, we arrive at our results. Using the identities obtained in this paper, we give two interesting identities involving binomial coefficients. In addition, we also derive two nontrivial summation equations from the two multiple extensions. (English)
Keyword: $U(n+1)$ group
Keyword: multiple basic hypergeometric series
Keyword: basic hypergeometric series
MSC: 11B65
MSC: 15A09
MSC: 33C80
MSC: 33D70
MSC: 33D80
idZBL: Zbl 06604474
idMR: MR3519609
DOI: 10.1007/s10587-016-0263-0
.
Date available: 2016-06-16T12:48:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145731
.
Reference: [1] Andrews, G. E.: Problems and prospects for basic hypergeometric functions.Theory and Application of Special Functions R. Askey Academic Press New York (1975), 191-224. Zbl 0342.33001, MR 0399528
Reference: [2] Bhatnagar, G., Schlosser, M.: $C_n$ and $D_n$ very-well-poised $_{10}\varphi_9$ transformations.Constr. Approx. 14 (1998), 531-567. Zbl 0936.33009, MR 1646535, 10.1007/s003659900089
Reference: [3] Bowman, D.: $q$-difference operators, orthogonal polynomials, and symmetric expansions.Mem. Am. Math. Soc. 159 (2002), 56 pages. Zbl 1018.33014, MR 1921582
Reference: [4] Carlitz, L.: Generating functions for certain $q$-orthogonal polynomials.Collect. Math. 23 (1972), 91-104. Zbl 0273.33012, MR 0316773
Reference: [5] Chen, W. Y. C., Liu, Z.-G.: Parameter augmentation for basic hypergeometric series. II.J. Combin. Theory Ser. A 80 (1997), 175-195. Zbl 0901.33009, MR 1485133, 10.1006/jcta.1997.2801
Reference: [6] Denis, R. Y., Gustafson, R. A.: An $SU(n)$ $q$-beta integral transformation and multiple hypergeometric series identities.SIAM J. Math. Anal. 23 (1992), 552-561. Zbl 0777.33009, MR 1147877, 10.1137/0523027
Reference: [7] Fang, J.-P.: Some applications of $q$-differential operator.J. Korean Math. Soc. 47 (2010), 223-233. Zbl 1230.05048, MR 2605977, 10.4134/JKMS.2010.47.2.223
Reference: [8] Fang, J.-P.: Extensions of $q$-Chu-Vandermonde's identity.J. Math. Anal. Appl. 339 (2008), 845-852. Zbl 1160.33011, MR 2375241, 10.1016/j.jmaa.2007.07.029
Reference: [9] Fang, J.-P.: $q$-differential operator identities and applications.J. Math. Anal. Appl. 332 (2007), 1393-1407. Zbl 1114.33023, MR 2324346, 10.1016/j.jmaa.2006.10.087
Reference: [10] Gasper, G., Rahman, M.: Basic Hypergeometric Series.Encyclopedia of Mathematics and Its Applications 96 Cambridge University Press, Cambridge (2004). Zbl 1129.33005, MR 2128719
Reference: [11] Gustafson, R. A.: Some $q$-beta and Mellin-Barnes integrals with many parameters associated to the classical groups.SIAM J. Math. Anal. 23 (1992), 525-551. Zbl 0764.33008, MR 1147876, 10.1137/0523026
Reference: [12] Gustafson, R. A.: Multilateral summation theorems for ordinary and basic hypergeometric series in $U(n)$.SIAM J. Math. Anal. 18 (1987), 1576-1596. Zbl 0624.33012, MR 0911651, 10.1137/0518114
Reference: [13] Gustafson, R. A., Krattenthaler, C.: Heine transformations for a new kind of basic hypergeometric series in $U(n)$.J. Comput. Appl. Math. 68 (1996), 151-158. Zbl 0853.33015, MR 1418755, 10.1016/0377-0427(95)00260-X
Reference: [14] Liu, Z.-G.: Some operator identities and $q$-series transformation formulas.Discrete Math. 265 (2003), 119-139. Zbl 1021.05010, MR 1969370, 10.1016/S0012-365X(02)00626-X
Reference: [15] Milne, S. C.: Balanced $_3\Phi_2$ summation theorems for $U(n)$ basic hypergeometric series.Adv. Math. 131 (1997), 93-187. MR 1475046, 10.1006/aima.1997.1658
Reference: [16] Milne, S. C.: A new symmetry related to $SU(n)$ for classical basic hypergeometric series.Adv. Math. 57 (1985), 71-90. MR 0800860, 10.1016/0001-8708(85)90106-9
Reference: [17] Milne, S. C.: An elementary proof of the Macdonald identities for $A_l^{(1)}$.Adv. Math. 57 (1985), 34-70. MR 0800859, 10.1016/0001-8708(85)90105-7
Reference: [18] Milne, S. C., Newcomb, J. W.: $U(n)$ very-well-poised $_{10}\Phi_9$ transformations.J. Comput. Appl. Math. 68 (1996), 239-285. MR 1418761, 10.1016/0377-0427(95)00248-0
Reference: [19] Rogers, L. J.: On the expansion of some infinite products.Lond. M. S. Proc. 25 (1894), 318-343.
Reference: [20] Rogers, L. J.: On the expansion of some infinite products.Lond. M. S. Proc. 24 (1893), 337-352. MR 1577136
Reference: [21] Schlosser, M.: Summation theorems for multidimensional basic hypergeometric series by determinant evaluations.Discrete Math. 210 (2000), 151-169. Zbl 0941.33012, MR 1731612, 10.1016/S0012-365X(99)00125-9
Reference: [22] Schlosser, M.: Some new applications of matrix inversions in $A_r$.Ramanujan J. 3 (1999), 405-461. Zbl 0944.33016, MR 1738906, 10.1023/A:1009809424076
Reference: [23] Wang, M.: Generalizations of Milne's $U(n+1)$ $q$-binomial theorems.Comput. Math. Appl. 58 (2009), 80-87. MR 2535969, 10.1016/j.camwa.2009.03.086
Reference: [24] Zhang, Z.: Operator identities and several $U(n+1)$ generalizations of the Kalnins-Miller transformations.J. Math. Anal. Appl. 324 (2006), 1152-1167. Zbl 1113.33020, MR 2266549, 10.1016/j.jmaa.2005.12.073
.

Files

Files Size Format View
CzechMathJ_66-2016-2_8.pdf 278.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo