Previous |  Up |  Next

Article

Title: Prolongation of Poisson $2$-form on Weil bundles (English)
Author: Moukala, Norbert Mahoungou
Author: Bossoto, Basile Guy Richard
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 2
Year: 2016
Pages: 91-111
Summary lang: English
.
Category: math
.
Summary: In this paper, $M$ denotes a smooth manifold of dimension $n$, $A$ a Weil algebra and $M^{A}$ the associated Weil bundle. When $(M,\omega _{M})$ is a Poisson manifold with $2$-form $\omega _{M}$, we construct the $2$-Poisson form $\omega _{M^{A}}^{A}$, prolongation on $M^{A}$ of the $2$-Poisson form $\omega _{M}$. We give a necessary and sufficient condition for that $M^{A}$ be an $A$-Poisson manifold. (English)
Keyword: Weil bundle
Keyword: Weil algebra
Keyword: Poisson manifold
Keyword: Lie derivative
Keyword: Poisson 2-form
MSC: 17D63
MSC: 53D05
MSC: 53D17
MSC: 58A20
MSC: 58A32
idZBL: Zbl 06644061
idMR: MR3535631
DOI: 10.5817/AM2016-2-91
.
Date available: 2016-07-19T11:27:10Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145748
.
Reference: [1] Bossoto, B.G.R., Okassa, E.: Champs de vecteurs et formes différentielles sur une variété des points proches.Arch. Math. (Brno) 44 (2008), 159–171. Zbl 1212.13016, MR 2432853
Reference: [2] Bossoto, B.G.R., Okassa, E.: A-poisson structures on Weil bundles.Int. J. Contemp. Math. Sci. 7 (16) (2012), 785–803. Zbl 1247.53093, MR 2901677
Reference: [3] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.Springer, Berlin, 1993. MR 1202431
Reference: [4] Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson Structures.Grundlehren Math. Wiss. 347 (2013), www.springer.com/series/138. MR 2906391
Reference: [5] Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées.J. Differential Geom. 12 (1977), 253–300. Zbl 0405.53024, MR 0501133, 10.4310/jdg/1214433987
Reference: [6] Morimoto, A.: Prolongation of connections to bundles of infinitely near points.J. Differential Geom. 11 (1976), 479–498. Zbl 0358.53013, MR 0445422, 10.4310/jdg/1214433720
Reference: [7] Moukala, N.M., Bossoto, B.G.R.: Hamiltonian vector fields on Weil bundles.Journal of Mathematics Research 7 (3) (2015), 141–148. 10.5539/jmr.v7n3p141
Reference: [8] Nkou, V.B., Bossoto, B.G.R., Okassa, E.: New characterization of vector field on Weil bundles.Theoretical Mathematics $\&$ Applications 5 (2) (2015), 1–17, arXiv:1504.04483 [math.DG].
Reference: [9] Okassa, E.: Prolongement des champs de vecteurs à des variétés des points proches.Ann. Fac. Sci. Toulouse Math. (5) 8 (3) (1986–1987), 346–366. MR 0948759
Reference: [10] Okassa, E.: Algèbres de Jacobi et algèbres de Lie-Rinehart-Jacobi.J. Pure Appl. Algebra 208 (3) (2007), 1071–1089. Zbl 1163.17025, MR 2283447, 10.1016/j.jpaa.2006.05.013
Reference: [11] Okassa, E.: On Lie-Rinehart-Jacobi algebras.J. Algebra Appl. 7 (2008), 749–772. Zbl 1226.17017, MR 2483330, 10.1142/S0219498808003107
Reference: [12] Okassa, E.: Symplectic Lie-Rinehart-Jacobi algebras and contact manifolds.Canad. Math. Bull. 54 (4) (2011), 716–725. Zbl 1232.53062, MR 2894521, 10.4153/CMB-2011-033-6
Reference: [13] Shurygin, V.V.: Some aspects of the theory of manifolds over algebras and of Weil bundles.J. Math. Sci. (New York) 169 (3) (2010), 315–341. MR 2866746, 10.1007/s10958-010-0051-6
Reference: [14] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds.Progress in Math., vol. 118, Birkhäuser Verlag, Basel, 1994. Zbl 0810.53019, MR 1269545
Reference: [15] Weil, A.: Théorie des points proches sur les variétés différentiables.Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg (1953), 111–117. Zbl 0053.24903, MR 0061455
.

Files

Files Size Format View
ArchMathRetro_052-2016-2_3.pdf 544.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo