Previous |  Up |  Next

Article

Title: The $\sigma$-property in $C(X)$ (English)
Author: Hager, Anthony W.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 2
Year: 2016
Pages: 231-239
Summary lang: English
.
Category: math
.
Summary: The $\sigma$-property of a Riesz space (real vector lattice) $B$ is: For each sequence $\{b_{n}\}$ of positive elements of $B$, there is a sequence $\{\lambda_{n}\}$ of positive reals, and $b\in B$, with $\lambda_{n}b_{n}\leq b$ for each $n$. This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when ``$\sigma$'' obtains for a Riesz space of continuous real-valued functions $C(X)$. A basic result is: For discrete $X$, $C(X)$ has $\sigma$ iff the cardinal $|X|< \mathfrak{b}$, Rothberger's bounding number. Consequences and generalizations use the Lindelöf number $L(X)$: For a $P$-space $X$, if $L(X)\leq \mathfrak{b}$, then $C(X)$ has $\sigma$. For paracompact $X$, if $C(X)$ has $\sigma$, then $L(X)\leq \mathfrak{b}$, and conversely if $X$ is also locally compact. For metrizable $X$, if $C(X)$ has $\sigma$, then $X$ \textit{is} locally compact. (English)
Keyword: Riesz space
Keyword: $\sigma$-property
Keyword: bounding number
Keyword: $P$-space
Keyword: paracompact
Keyword: locally compact
MSC: 03E17
MSC: 06F20
MSC: 46A40
MSC: 54A25
MSC: 54C30
MSC: 54D20
MSC: 54D45
MSC: 54G10
idZBL: Zbl 06604503
idMR: MR3513446
DOI: 10.14712/1213-7243.2015.162
.
Date available: 2016-07-05T15:10:41Z
Last updated: 2018-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145753
.
Reference: [BGHTZ09] Ball R., Gochev V., Hager A., Todorčević S., Zoble S.: Topological group criterion for $C(X)$ in compact-open-like topologies I..Topology Appl. 156 (2009), 710–720. Zbl 1166.54007, MR 2492956
Reference: [BJ86] Blass A., Jech T.: On the Egoroff property of pointwise convergent sequences of functions.Proc. Amer. Math. Society 90 (1986), 524–526. Zbl 0601.54004, MR 0857955, 10.1090/S0002-9939-1986-0857955-3
Reference: [D74] Dodds, Theresa K.Y. Chow: Egoroff properties and the order topology in Riesz spaces.Trans. Amer. Math. Soc. 187 (1974), 365–375. MR 0336282, 10.1090/S0002-9947-1974-0336282-3
Reference: [D84] van Douwen E.: The integers and topology.in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111–1676. Zbl 0561.54004, MR 0776622
Reference: [E89] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [GJ60] Gillman L., Jerison M.: Rings of Continuous Functions.The University Series in Higher Mathematics, Van Nostrand, Princeton, N.J.-Toronto-London-New York, 1960. Zbl 0327.46040, MR 0116199
Reference: [HM15] Hager A., van Mill J.: Egoroff, $\sigma$, and convergence properties in some archimedean vector lattices.Studia Math. 231 (2015), 269–285. MR 3471054
Reference: [HR16] Hager A., Raphael R.: The countable lifting property for Riesz space surjections.Indag. Math., 27 (2016), 75–84. MR 3437737, 10.1016/j.indag.2015.07.005
Reference: [H68] Holbrook J.: Seminorms and the Egoroff property in Riesz spaces.Trans. Amer. Math. Soc. 132 (1968), 67–77. Zbl 0169.14802, MR 0228979, 10.1090/S0002-9947-1968-0228979-8
Reference: [J80] Jech T.: On a problem of L. Nachbin.Proc. Amer. Math. Soc. 79 (1980), 341–342. Zbl 0441.04002, MR 0565368, 10.1090/S0002-9939-1980-0565368-1
Reference: [J02] Jech T.: Set Theory.third millennium edition, Springer, Berlin, 2003. Zbl 1007.03002, MR 1940513
Reference: [LZ71] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces.Vol. I, North-Holland Mathematical Library, North-Holland, Amsterdam-London, 1971. Zbl 0231.46014, MR 0511676
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-2_7.pdf 284.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo