Previous |  Up |  Next

Article

Keywords:
critical point; height function; submanifold in space forms; invariator principle; local stereology; rotational formulae; surface area estimation
Summary:
A surface area estimator for three-dimensional convex sets, based on the invariator principle of local stereology, has recently motivated its generalization by means of new rotational Crofton-type formulae using Morse theory. We follow a different route to obtain related formulae which are more manageable and valid for submanifolds in constant curvature spaces. As an application, we obtain a simplified version of the mentioned surface area estimator for non-convex sets of smooth boundary.
References:
[1] Auneau, J., Jensen, E. B. V.: Expressing intrinsic volumes as rotational integrals. Adv. Appl. Math. 45 (2010), 1-11. DOI 10.1016/j.aam.2009.11.010 | MR 2628780 | Zbl 1202.60018
[2] Blaschke, W.: Integralgeometrie 1. Actualités Scientifiques et Industrielles 252 Hermann & Cie., Paris German (1935).
[3] Cartan, E.: Le principe de dualité et certaines intégrales multiples de l'espace tangentiel et de l'espace réglé. Bull. Soc. Math. Fr. 24 (1896), 140-177 French.
[4] Crofton, M. W.: On the theory of local probability, applied to Straight Lines drawn at random in a plane; the methods used being also extended to the proof of certain new Theorems in the Integral Calculus. Philos. Trans. R. Soc. Lond. 158 (1868), 181-199. DOI 10.1098/rstl.1868.0008
[5] Cruz-Orive, L. M.: A new stereological principle for test lines in three-dimensional space. J. Microsc. 219 (2005), 18-28. DOI 10.1111/j.1365-2818.2005.01489.x | MR 2149754
[6] Dvořák, J., Jensen, E. B.: On semiautomatic estimation of surface area. J. Microsc. 250 (2013), 142-57. DOI 10.1111/jmi.12030
[7] Gual-Arnau, X., Cruz-Orive, L. M.: A new expression for the density of totally geodesic submanifolds in space forms, with stereological applications. Differ. Geom. Appl. 27 (2009), 124-128. DOI 10.1016/j.difgeo.2008.06.013 | MR 2488995 | Zbl 1168.53039
[8] Gual-Arnau, X., Cruz-Orive, L. M., Nu{ñ}o-Ballesteros, J. J.: A new rotational integral formula for intrinsic volumes in space forms. Adv. Appl. Math. 44 (2010), 298-308. DOI 10.1016/j.aam.2009.09.003 | MR 2593313 | Zbl 1188.53089
[9] Gutkin, E.: Curvatures, volumes and norms of derivatives for curves in Riemannian manifolds. J. Geom. Phys. 61 (2011), 2147-2161. DOI 10.1016/j.geomphys.2011.06.013 | MR 2827115 | Zbl 1231.53005
[10] Hirsch, M. W.: Differential Topology. Corrected reprint of the 1976 original. Graduate Texts in Mathematics 33 Springer, New York (1994). MR 1336822
[11] Petkantschin, B.: Integralgeometrie 6. Zusammenhänge zwischen den Dichten der linearen Unterräume im $n$-dimensionalen Raum. Abh. Math. Semin. Hamb. Univ. 11 (1936), 249-310 German. DOI 10.1007/BF02940729
[12] Ren, D.-l.: Topics in Integral Geometry. Series in Pure Mathematics 19 World Scientific, Singapore (1994). MR 1336595 | Zbl 0842.53001
[13] Santal{ó}, L. A.: Integral Geometry and Geometric Probability. Cambridge Mathematical Library Cambridge University Press, Cambridge (2004). MR 2162874 | Zbl 1116.53050
[14] Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications Springer, Berlin (2008). MR 2455326 | Zbl 1175.60003
[15] Thórisdóttir, Ó., Kiderlen, M.: The invariator principle in convex geometry. Adv. Appl. Math. 58 (2014), 63-87. DOI 10.1016/j.aam.2014.02.003 | MR 3213744 | Zbl 1358.52009
[16] Thórisdóttir, Ó., Rafati, A. H., Kiderlen, M.: Estimating the surface area of nonconvex particles from central planar sections. J. Micrsoc. 255 (2014), 49-64. DOI 10.1111/jmi.12136
Partner of
EuDML logo