[4] Choi, J., Cvijoviæ, D.:
Values of the polygamma functions at rational arguments. J. Phys. A: Math. Theor., 40, 50, 2007, 15019-15028, Corrigendum, ibidem, 43 (2010), 239801 (1p).
DOI 10.1088/1751-8113/40/50/007 |
MR 2442610
[5] Choi, J.:
Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers. J. Inequal. Appl., 49, 2013, 1-11,
MR 3031578 |
Zbl 1283.11115
[8] Ciaurri, O., Navas, L. M., Ruiz, F. J., Varano, J. L.:
A simple computation of $\zeta (2k)$. Amer. Math. Monthly., 122, 5, 2015, 444-451,
DOI 10.4169/amer.math.monthly.122.5.444 |
MR 3352803
[9] Coffey, M. W., Lubbers, N.:
On generalized harmonic number sums. Appl. Math. Comput., 217, 2010, 689-698,
MR 2678582 |
Zbl 1202.33001
[11] Devoto, A., Duke, D. W.:
Table of integrals and formulae for Feynman diagram calculation. La Rivista del Nuovo Cimento, 7, 6, 1984, 1-39,
MR 0781905
[14] Kölbig, K.:
The polygamma function $\psi (x)$ for $x=1/4$ and $x=3/4$. J. Comput. Appl. Math. , 75, 1996, 43-46,
MR 1424884
[18] Sofo, A.:
Computational Techniques for the Summation of Series. 2003, Kluwer Academic/Plenum Publishers, New York,
MR 2020630 |
Zbl 1059.65002
[21] Sofo, A.: Integral forms associated with harmonic numbers. Appl. Math. Comput., 207, 2, 2009, 365-372,
[25] Srivastava, H. M., Choi, J.:
Series Associated with the Zeta and Related Functions. 530, 2001, Kluwer Academic Publishers, London,
MR 1849375 |
Zbl 1014.33001
[26] Srivastava, H. M., Choi, J.:
Zeta and $q$-Zeta Functions and Associated Series and Integrals. 2012, Elsevier Science Publishers, Amsterdam, London and New York,
MR 3294573 |
Zbl 1239.33002
[29] Wu, T. C., Tu, S. T., Srivastava, H. M.:
Some combinatorial series identities associated with the digamma function and harmonic numbers. Appl. Math. Lett., 13, 3, 2000, 101-106,
DOI 10.1016/S0893-9659(99)00193-7 |
MR 1755751 |
Zbl 0953.33001