[1] Badea, C.: 
The irrationality of certain infinite products. Studia Univ. Babeş-Bolyai Math., 31, 3, 1986, 3-8,  
MR 0911859 | 
Zbl 0625.10027[3] Duverney, D.: 
Sur les séries de nombres rationnels à convergence rapide. Comptes Rendus de l'Académie des Sciences, Series I, Mathematics, 328, 7, 1999, 553-556,  
MR 1680014 | 
Zbl 0940.11027[4] Erdős, P.: Problem 4321. The American Mathematical Monthly, 64, 7, 1950, 
[5] Erdős, P.: 
Some Problems and Results on the Irrationality of the Sum of Infinite Series. Journal of Mathematical Sciences, 10, 1975, 1-7,  
MR 0539489 | 
Zbl 0372.10023[6] Erdős, P.: Erdős problem no. 6. 1995 Prague Midsummer Combinatorial Workshop, KAM Series (95-309) (ed. M. Klazar) (KAM MPP UK, Prague, 1995), 1995, 
[7] Erdős, P., Straus, E. G.: 
On the irrationality of certain Ahmes series. Journal of Indian Mathematical Society, 27, 1964, 129-133,  
MR 0175848[10] Hančl, J., Filip, F.: 
Irrationality Measure of Sequences. Hiroshima Math. J., 35, 2, 2005, 183-195,  
MR 2176050 | 
Zbl 1087.11049[13] Hančl, J., Kolouch, O., Novotný, L.: 
A Criterion for linear independence of infinite products. An. St. Univ. Ovidius Constanta, 23, 2, 2015, 107-120,  
MR 3348703 | 
Zbl 1349.11105[14] Hančl, J., Kolouch, O., Pulcerová, S., Štěpnička, J.: 
A note on the transcendence of infinite products. Czechoslovak Math. J., 62, 137, 2012, 613-623,  
DOI 10.1007/s10587-012-0053-2 | 
MR 2984622 | 
Zbl 1265.11078[15] Hančl, J., Korčeková, K., Novotný, L.: 
Productly linearly independent sequences. Stud. Sci. Math. Hung., 52, 2015, 350-370,  
MR 3402910 | 
Zbl 1363.11073[16] Hančl, J., Nair, R., Novotný, L.: 
On expressible sets of products. Period. Math. Hung., 69, 2, 2014, 199-206,  
DOI 10.1007/s10998-014-0058-8 | 
MR 3278957 | 
Zbl 1340.11067[17] Hančl, J., Nair, R., Novotný, L., Šustek, J.: 
On the Hausdorff dimension of the expressible set of certain sequences. Acta Arithmetica, 155, 1, 2012, 85-90,  
DOI 10.4064/aa155-1-8 | 
MR 2982430 | 
Zbl 1272.11094[18] Hančl, J., Nair, R., Šustek, J.: 
On the Lebesgue measure of the expressible set of certain sequences. Indag. Mathem., 17, 4, 2006, 567-581,  
DOI 10.1016/S0019-3577(06)81034-7 | 
MR 2320114 | 
Zbl 1131.11048[19] Hančl, J., Schinzel, A., Šustek, J.: 
On Expressible Sets of Geometric Sequences. Funct. Approx. Comment. Math., 38, 2008, 341-357,  
MR 2490089 | 
Zbl 1215.11077[20] Kurosawa, T., Tachiya, Y., Tanaka, T.: 
Algebraic independence of the values of certain infinite products and their derivatives related to Fibonacci and Lucas numbers (Analytic Number Theory: Number Theory through Approximation and Asymptotics). Proceedings of Institute for Mathematical Sciences, Kyoto University, 1874, 2014, 81-93, Research Institute for Mathematical Sciences,  
MR 3178476[22] Nyblom, M. A.: 
On the construction of a family of transcendental valued infinite products. Fibonacci Quart., 42, 4, 2004, 353-358,  
MR 2110089 | 
Zbl 1062.11048[23] Sándor, J.: 
Some classes of irrational numbers. Studia Universitatis Babeş-Bolyai Mathematica, 29, 1984, 3-12,  
MR 0782282 | 
Zbl 0544.10033