Previous |  Up |  Next

Article

Keywords:
block upper triangularity; additive decomposition; rank constraints; zero pattern matrix algebra; preorder; partial order; Hasse diagram; rooted tree; out-tree; in-tree
Summary:
For a block upper triangular matrix, a necessary and sufficient condition has been given to let it be the sum of block upper rectangular matrices satisfying certain rank constraints; see H. Bart, A. P. M. Wagelmans (2000). The proof involves elements from integer programming and employs Farkas' lemma. The algebra of block upper triangular matrices can be viewed as a matrix algebra determined by a pattern of zeros. The present note is concerned with the question whether the decomposition result referred to above can be extended to other zero pattern matrix algebras. It is shown that such a generalization does indeed hold for certain digraphs determining the pattern of zeros. The digraphs in question can be characterized in terms of forests, i.e., disjoint unions of rooted trees.
References:
[1] Bart, H., Ehrhardt, T., Silbermann, B.: Echelon type canonical forms in upper triangular matrix algebras. (to appear) in Oper. Theory, Adv. Appl.
[2] Bart, H., Ehrhardt, T., Silbermann, B.: Sums of idempotents and logarithmic residues in zero pattern matrix algebras. Linear Algebra Appl. 498 (2016), 262-316. MR 3478563 | Zbl 1334.15039
[3] Bart, H., Ehrhardt, T., Silbermann, B.: Sums of idempotents and logarithmic residues in matrix algebras. Operator Theory and Analysis. The M. A. Kaashoek Anniversary Volume (Bart, H. et al. eds.), Oper. Theory, Adv. Appl. 122 (2001), 139-168. MR 1846056 | Zbl 1047.46037
[4] Bart, H., Ehrhardt, T., Silbermann, B.: Logarithmic residues in Banach algebras. Integral Equations Oper. Theory 19 (1994), 135-152. DOI 10.1007/BF01206410 | MR 1274555 | Zbl 0811.46043
[5] Bart, H., Wagelmans, A. P. M.: An integer programming problem and rank decomposition of block upper triangular matrices. Linear Algebra Appl. 305 (2000), 107-129. MR 1733797 | Zbl 0951.15013
[6] Birkhoff, G.: Lattice Theory. Colloquium Publications Vol. 25 American Mathematical Society, Providence (1967). MR 0227053 | Zbl 0153.02501
[7] Davis, R. L.: Algebras defined by patterns of zeros. J. Comb. Theory 9 (1970), 257-260. DOI 10.1016/S0021-9800(70)80064-3 | MR 0268208 | Zbl 0211.06401
[8] Fang, S.-C., Puthenpura, S.: Linear Optimization and Extensions: Theory and Algorithms. Prentice-Hall, Englewood Cliffs (1993).
[9] Harary, F.: Graph Theory. Addison-Wesley Series in Mathematics, Reading, Mass. Addison-Wesley Publishing Company (1969). MR 0256911 | Zbl 0196.27202
[10] Laffey, T. J.: A structure theorem for some matrix algebras. Linear Algebra Appl. 162-164 (1992), 205-215. MR 1148400 | Zbl 0758.16010
[11] Papadimitriou, C. H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs (1982). MR 0663728 | Zbl 0503.90060
[12] Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics John Wiley & Sons, Chichester (1986). MR 0874114 | Zbl 0665.90063
[13] Szpilrajn, E.: Sur l'extension de l'ordre partiel. Fundamenta Mathematicae 16 (1930), 386-389 French available at\ http://matwbn.icm.edu.pl/ksiazki/fm/fm16/fm16125.pdf\kern-3sp DOI 10.4064/fm-16-1-386-389
Partner of
EuDML logo