[1] Caboussat, A., Glowinski, R.:
Numerical solution of a variational problem arising in stress analysis: the vector case. Discrete Contin. Dyn. Syst. 27 (2010), 1447-1472.
DOI 10.3934/dcds.2010.27.1447 |
MR 2629532
[2] Cermak, M., Haslinger, J., Kozubek, T., Sysala, S.:
Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies: Part II---numerical realization, limit analysis. ZAMM, Z. Angew. Math. Mech. 95 (2015), 1348-1371.
DOI 10.1002/zamm.201400069 |
MR 3434744
[3] Chen, W. F., Liu, X. L.: Limit Analysis in Soil Mechanics. Elsevier (1990).
[4] Christiansen, E.:
Limit analysis of collapse states. P. G. Ciarlet Handbook of Numerical Analysis, Volume IV: Finite Element Methods (part 2), Numerical Methods for Solids (part 2) North-Holland, Amsterdam 193-312 (1996).
MR 1422505
[5] Neto, E. A. de Souza, Perić, D., Owen, D. R. J.: Computational Methods for Plasticity: Theory and Applications. Wiley (2008).
[6] Dierkes, U., Hildebrandt, S., Sauvigny, F.:
Minimal Surfaces. Grundlehren der Mathematischen Wissenschaften 339 Springer, Dordrecht (2010).
MR 2566897 |
Zbl 1213.53002
[8] Ekeland, I., Temam, R.:
Convex Analysis and Variational Problems. Études Mathématiques Dunod; Gauthier-Villars, Paris French (1974).
MR 0463993 |
Zbl 0281.49001
[10] Fučík, S., Kufner, A.:
Nonlinear Differential Equations. Studies in Applied Mechanics 2 Elsevier Scientific Publishing Company, Amsterdam (1980).
MR 0558764
[11] Giusti, E.:
Minimal Surfaces and Functions of Bounded Variations. Monographs in Mathematics 80 Birkhäuser, Basel (1984).
MR 0775682
[12] Hansbo, P.:
A discontinuous finite element method for elasto-plasticity. Int. J. Numer. Methods Biomed. Eng. 26 (2010), 780-789.
MR 2642251 |
Zbl 1351.74082
[13] Haslinger, J., Repin, S., Sysala, S.:
A reliable incremental method of computing the limit load in deformation plasticity based on compliance: Continuous and discrete setting. J. Comput. Appl. Math. 303 (2016), 156-170.
DOI 10.1016/j.cam.2016.02.035 |
MR 3479280
[14] Johnson, C., Scott, R.:
A finite element method for problems in perfect plasticity using discontinuous trial functions. Nonlinear Finite Element Analysis in Structural Mechanics Proc. Europe-U.S. Workshop, Bochum, 1980 W. Wunderlich, et al. Springer, Berlin 307-324 (1981).
MR 0631535 |
Zbl 0572.73076
[15] Krasnosel'skii, M. A.:
Topological Methods in the Theory of Nonlinear Integral Equations. International Series of Monographs on Pure and Applied Mathematics 45 Pergamon Press, Oxford (1964).
MR 0159197
[17] Liu, F., Zhao, J.:
Limit analysis of slope stability by rigid finite-element method and linear programming considering rotational failure. Int. J. Geomech. 13 (2013), 827-839.
DOI 10.1061/(ASCE)GM.1943-5622.0000283
[18] Nitsche, J. C. C.:
Lectures on Minimal Surfaces: Volume 1: Introduction, Fundamentals, Geometry and Basic Boundary Value Problems. Revised, extended and updated by the author. Cambridge University Press, Cambridge (2011).
MR 1015936
[19] Ramm, E.: Strategies for tracing nonlinear response near limit points. Nonlinear Finite Element Analysis in Structural Mechanics W. Wunderlich Proc. Europe-U.S.Workshop, Bochum, 1980 Springer, Berlin 63-89 (1981).
[20] Repin, S., Seregin, G.:
Existence of a weak solution of the minimax problem arising in Coulomb-Mohr plasticity. Nonlinear Evolution Equations Am. Math. Soc. Ser. 2, 164 189-220 (1995), American Mathematical Society, Providence N. N. Uraltseva.
DOI 10.1090/trans2/164/09 |
MR 1334144 |
Zbl 0890.73079
[23] Suquet, P.-M.:
Existence et régularité des solutions des équations de la plasticité parfaite. C. R. Acad. Sci., Paris, Sér. A 286 (1978), French 1201-1204.
MR 0501114
[24] Sysala, S.:
Properties and simplifications of constitutive time-discretized elastoplastic operators. ZAMM, Z. Angew. Math. Mech. 94 (2014), 233-255.
DOI 10.1002/zamm.201200056 |
MR 3179702
[25] Sysala, S., Cermak, M., Koudelka, T., Kruis, J., Zeman, J., Blaheta, R.:
Subdifferential-based implicit return-mapping operators in computational plasticity. ZAMM, Z. Angew. Math. Mech. 96 (2016), 1-21, DOI 10.1002/zamm.201500305.
DOI 10.1002/zamm.201500305 |
MR 3580287
[26] Sysala, S., Haslinger, J., Hlaváček, I., Cermak, M.:
Discretization and numerical realization of contact problems for elastic-perfectly plastic bodies: PART I -- discretization, limit analysis. ZAMM, Z. Angew. Math. Mech. 95 (2015), 333-353.
DOI 10.1002/zamm.201300112 |
MR 3340908 |
Zbl 1322.74055
[27] Temam, R.:
Mathematical Problems in Plasticity. Gauthier-Villars, Montrouge (1983).
MR 0711964
[29] Zienkiewicz, O. C., Taylor, R. L.:
The Finite Element Method. Vol. 2. Solid Mechanics. Butterworth-Heinemann, Oxford (2000).
MR 1897986