[4] Vecchia, E. Della, Marco, S. Di, Vidal, F.: Dynamic programming for variable discounted Markov decision problems. In: Jornadas Argentinas de Informática e Investigación O\-pe\-ra\-ti\-va (43JAIIO) XII Simposio Argentino de Investigación Operativa (SIO), Buenos Aires 2014, pp. 50-62.
[5] Feinberg, E., Shwartz, A.: 
Constrained dynamic programming with two discount factors: applications and an algorithm. IEEE Trans. Automat. Control 44 (1999), 628-631. 
DOI 10.1109/9.751365 | 
MR 1680195 | 
Zbl 0957.90127 
[8] González-Hernández, J., López-Martínez, R. R., Minjarez-Sosa, J. A.: 
Adaptive policies for stochastic systems under a randomized discounted criterion. Bol. Soc. Mat. Mex. 14 (2008), 149-163. 
MR 2667162 
[9] González-Hernández, J., López-Martínez, R. R., Minjarez-Sosa, J. A.: 
Approximation, estimation and control of stochastic systems under a randomized discounted cost criterion. Kybernetika 45 (2009), 737-754. 
MR 2599109 | 
Zbl 1190.93105 
[10] González-Hernández, J., López-Martínez, R. R., Minjarez-Sosa, J. A., Gabriel-Arguelles, J. A.: Constrained Markov control processes with randomized discounted cost criteria: occupation measures and external points. Risk and Decision Analysis 4 (2013), 163-176.
[11] González-Hernández, J., López-Martínez, R. R., Minjarez-Sosa, J. A., Gabriel-Arguelles, J. A.: 
Constrained Markov control processes with randomized discounted rate: infinite linear programming approach. Optimal Control Appl. Methods 35 (2014), 575-591. 
DOI 10.1002/oca.2089 | 
MR 3262763 
[18] Puterman, M. L.: 
Markov Decision Process: Discrete Stochastic Dynamic Programming. John Wiley and Sons, New York 1994. 
MR 1270015 
[19] Sch{ä}l, M.: 
Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Probab. Theory Related Fields 32 (1975), 179-196. 
DOI 10.1007/bf00532612 | 
MR 0378841 | 
Zbl 0316.90080 
[20] Wei, Q., Guo, X.: 
Markov decision processes with state-dependent discounted factors and unbounded rewards/costs. Oper. Res. Lett. 39 (2011), 369-374. 
DOI 10.1016/j.orl.2011.06.014 | 
MR 2835530 
[22] Wu, X., Guo, X.: 
First passage optimality and variance minimisation of Markov decision processes with varying discounted factors. J. Appl. Probab. 52 (2015), 441-456. 
DOI 10.1017/s0021900200012560 | 
MR 3372085 
[24] Wu, X., Zhang, J.: 
An application to the finite approximation of the first passage models for discrete-time Markov decision processes with varying discount factors. In: Proc. 11th World Congress on Intelligent Control and Automation 2015, pp. 1745-1748. 
DOI 10.1109/wcica.2014.7052984 | 
MR 3163332 
[25] Wu, X., Zhang, J.: 
Finite approximation of the first passage models for discrete-time Markov decision processes with varying discounted factors. Discrete Event Dyn. Syst. 26 (2016), 669-683. 
DOI 10.1007/s10626-014-0209-3 | 
MR 3557415