Previous |  Up |  Next

Article

Keywords:
interface problem; Stokes equation; finite element method
Summary:
Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates of order $h^{1/2}$ in $H^1\times L^2$ norm for the velocity and pressure, and of order $h$ in $L^2$ norm for the velocity are derived. Those theoretical results are also verified by numerical examples.
References:
[1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces. Pure and Applied Mathematics 140, Academic Press, New York (2003). MR 2424078 | Zbl 1098.46001
[2] Boffi, D., Gastaldi, L., Heltai, L.: Numerical stability of the finite element immersed boundary method. Math. Models Methods Appl. Sci. 17 (2007), 1479-1505. DOI 10.1142/S0218202507002352 | MR 2359913 | Zbl 1186.76661
[3] Boffi, D., Gastaldi, L., Heltai, L., Peskin, C. S.: On the hyper-elastic formulation of the immersed boundary method. Comput. Methods Appl. Mech. Eng. 197 (2008), 2210-2231. DOI 10.1016/j.cma.2007.09.015 | MR 2412821 | Zbl 1158.74523
[4] Dauge, M.: Stationary Stokes and Navier-Stokes systems on two- or three-dimensional domains with corners. I: Linearized equations. SIAM J. Math. Anal. 20 (1989), 74-97. DOI 10.1137/0520006 | MR 0977489 | Zbl 0681.35071
[5] Floryan, J. M., Rasmussen, H.: Numerical methods for viscous flows with moving boundaries. Appl. Mech. Rev. 42 (1989), 323-341. DOI 10.1115/1.3152416 | MR 1028357
[6] Fujita, H., Kawahara, H., Kawarada, H.: Distribution theoretic approach to fictitious domain method for Neumann problems. East-West J. Numer. Math. 3 (1995), 111-126. MR 1342887 | Zbl 0833.65120
[7] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics 5, Springer, Berlin (1986). DOI 10.1007/978-3-642-61623-5 | MR 0851383 | Zbl 0585.65077
[8] Hecht, F.: New development in freefem++. J. Numer. Math. 20 (2012), 251-265. DOI 10.1515/jnum-2012-0013 | MR 3043640 | Zbl 1266.68090
[9] Hou, T. Y.: Numerical solutions to free boundary problems. Acta Numerica 1995 Cambridge University Press, Cambridge A. Iserles (1995), 335-415. DOI 10.1017/S0962492900002567 | MR 1352474 | Zbl 0831.65137
[10] Kellogg, R. B., Osborn, J. E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21 (1976), 397-431. DOI 10.1016/0022-1236(76)90035-5 | MR 0404849 | Zbl 0317.35037
[11] Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer Monographs in Mathematics, Springer, Berlin (2012). DOI 10.1007/978-3-642-10455-8 | MR 3014461 | Zbl 1246.35005
[12] Ohmori, K., Saito, N.: On the convergence of finite element solutions to the interface problem for the Stokes system. J. Comput. Appl. Math. 198 (2007), 116-128. DOI 10.1016/j.cam.2005.11.018 | MR 2250391 | Zbl 1100.76036
[13] Peskin, C. S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10 (1972), 252-271. DOI 10.1016/0021-9991(72)90065-4 | Zbl 0244.92002
[14] Peskin, C. S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25 (1977), 220-252. DOI 10.1016/0021-9991(77)90100-0 | MR 0490027 | Zbl 0403.76100
[15] Peskin, C. S.: The immersed boundary method. Acta Numerica 11 (2002), 479-517. DOI 10.1017/S0962492902000077 | MR 2009378 | Zbl 1123.74309
[16] Quarteroni, A.: Numerical Models for Differential Problems. MS&A. Modeling, Simulation and Applications 8, Springer, Milano (2014). DOI 10.1007/978-88-470-5522-3 | MR 3183828 | Zbl 1285.65054
[17] Saito, N., Sugitani, Y.: Convergence of the immersed-boundary finite-element method for the Stokes problem. ArXiv:1611.07172.
[18] Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics Annu. Rev. Fluid Mech. 31, Annual Reviews, Palo Alto (1999), 567-603. DOI 10.1146/annurev.fluid.31.1.567 | MR 1670950
[19] Tabata, M.: Finite element schemes based on energy-stable approximation for two-fluid flow problems with surface tension. Hokkaido Math. J. 36 (2007), 875-890. DOI 10.14492/hokmj/1272848038 | MR 2378296 | Zbl 1134.76032
[20] Tornberg, A.-K., Engquist, B.: Numerical approximations of singular source terms in differential equations. J. Comput. Phys. 200 (2004), 462-488. DOI 10.1016/j.jcp.2004.04.011 | MR 2095274 | Zbl 1115.76392
Partner of
EuDML logo