[3] Chalco-Cano, Y., Rufián-Lizana, A., Román-Flores, H., Osuna-Gómez, R.: 
A note on generalized convexity for fuzzy mappings through a linear ordering. Fuzzy Sets and Systems 231 (2013), 70-83. 
DOI 10.1016/j.fss.2013.07.001 | 
MR 3111894 
[5] Dugundji, J.: 
Topology. Allyn and Bacon, Boston 1966. 
MR 0193606 
[6] Froda, A.: 
Sur la Distribution des Propriétés de Voisinage des Fonctions de Variables Réelles. Thèse, Hermann, Paris 1929. 
MR 3532965 
[9] Iglesias, T., Montes, I., Janiš, V., Montes, S.: $T$-convexity for lattice-valued fuzzy sets. In: Proc. ESTYLF Conference, 2012.
[11] Janiš, V., Montes, S., Iglesias, T.: 
Aggregation of weakly quasi-convex fuzzy sets. In: Communications in Computer and Information Science: 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 2012, Catania 2012, pp. 353-359. 
DOI 10.1007/978-3-642-31718-7_37 
[12] Liu, X.-W., He, D.: 
Equivalent conditions of generalized convex fuzzy mappings. The Scientific World Journal 2014 (2014), 1-5. 
DOI 10.1155/2014/412534 
[14] Saminger-Platz, S., Mesiar, R., Bodenhofer, U.: 
Domination of aggregation operators and preservation of transitivity. Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 10(2002), Suppl., 11-35. 
DOI 10.1142/s0218488502001806 | 
MR 1962666 
[15] Saminger-Platz, S., Mesiar, R., Dubois, D.: 
Aggregation operators and commuting. IEEE Trans. Fuzzy Systems 15 (2007), 6, 1032-1045. 
DOI 10.1109/tfuzz.2006.890687