Article
Keywords:
star Lindelöf space; first countable space; normal space; countable extent
Summary:
A topological space $X$ is said to be star Lindelöf if for any open cover $\mathcal U$ of $X$ there is a Lindelöf subspace $A \subset X$ such that $\operatorname {St}(A, \mathcal U)=X$. The “extent” $e(X)$ of $X$ is the supremum of the cardinalities of closed discrete subsets of $X$. We prove that under $V=L$ every star Lindelöf, first countable and normal space must have countable extent. We also obtain an example under $\rm MA +\nobreak \neg CH$, which shows that a star Lindelöf, first countable and normal space may not have countable extent.
References:
                        
[2] Engelking, R.: 
General Topology. Sigma Series in Pure Mathematics 6. Heldermann, Berlin (1989). 
MR 1039321 | 
Zbl 0684.54001[5] Hodel, R.: 
Cardinal functions I. Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 1-61. 
MR 0776620 | 
Zbl 0559.54003[6] Miller, A. W.: 
Special subsets of the real line. Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 201-233. 
MR 0776624 | 
Zbl 0588.54035[7] Tall, F. D.: 
Normality versus collectionwise normality. Handbook of Set-Theoretic Topology K. Kunen et al. North-Holland, Amsterdam (1984), 685-732. 
MR 0776634 | 
Zbl 0552.54011