[1] Angelosante, D., Giannakis, G. B.:
Group Lassoing change-points in piecewise-constant AR processes. EURASIP J. Advances Signal Process. 2012 (2012), 1, 1-16.
DOI 10.1186/1687-6180-2012-70
[2] Bleakley, K., Vert, J. P.: The group fused Lasso for multiple change-point detection. Technical Report.
[3] Bruckstein, A. M., Donoho, D. L., Elad, M.:
From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev.51 (2009), 1, 34-81.
DOI 10.1137/060657704 |
MR 2481111
[4] Candes, E. J., Wakin, M. B.:
An introduction to compressive sampling. IEEE Signal Process. Magazine 25 (2008), 2, 21-30.
DOI 10.1109/msp.2007.914731
[6] Chambolle, A., Pock, T.:
A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40 (2011), 1, 120-145.
DOI 10.1007/s10851-010-0251-1 |
MR 2782122
[7] Chartrand, R.:
Shrinkage mappings and their induced penalty functions. In: IEEE International Conference on Acoustics, Speech, and Signal Processing 2014.
DOI 10.1109/icassp.2014.6853752
[8] Combettes, P., Pesquet, J.:
Proximal splitting methods in signal processing. In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering 2011, pp. 185-212.
DOI 10.1007/978-1-4419-9569-8_10 |
MR 2858838
[9] Condat, L.:
A generic proximal algorithm for convex optimization - application to total variation minimization. Signal Process. Lett., IEEE 21 (2014), 8, 985-989.
DOI 10.1109/lsp.2014.2322123
[10] Donoho, D. L., Elad, M.:
Optimally sparse representation in general (nonorthogonal) dictionaries via $\ell_1$ minimization. Proc. National Acad. Sci. 100 (2003), 5, 2197-2202.
DOI 10.1073/pnas.0437847100 |
MR 1963681
[11] Elad, M.:
Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer 2010.
MR 2677506
[13] Frecon, J., Pustelnik, N., Abry, P., Condat, L.:
On-the-fly approximation of multivariate total variation minimization. IEEE Trans. Signal Process. 64 (2016), 9, 2355-2364.
DOI 10.1109/tsp.2016.2516962 |
MR 3480014
[14] Giryes, R., Elad, M., Bruckstein, A. M.:
Sparsity based methods for overparameterized variational problems. SIAM J. Imaging Sci. 8 (2015), 3, 2133-2159.
DOI 10.1137/140998585 |
MR 3402782
[15] Nettest, GN: Understanding OTDR. GN Nettest (2000).
[16] Golub, G. H., Loan, C. F. V.:
Matrix Computations. Third edition. Johns Hopkins University Press 1996.
MR 1417720
[18] Komodakis, N., Pesquet, J.:
Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems. IEEE Signal Process. Magazine 32 (2015), 6, 31-54.
DOI 10.1109/msp.2014.2377273
[20] Kowalski, M., Torrésani, B.: Structured Sparsity: from Mixed Norms to Structured Shrinkage. In: SPARS'09 - Signal Processing with Adaptive Sparse Structured Representations (R. Gribonval, ed.), Inria Rennes - Bretagne Atlantique 2009, pp. 1-6.
[24] Novosadová, M., Rajmic, P.:
Piecewise-polynomial curve fitting using group sparsity. In: Proc. 8th International Congress on Ultra Modern Telecommunications and Control Systems, Lisabon 2016, pp. 317-322.
DOI 10.1109/icumt.2016.7765379
[25] Novosadová, M., Rajmic, P.:
Piecewise-polynomial signal segmentation using reweighted convex optimization. In: Proc. 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona 2017, pp. 769-774.
DOI 10.1109/tsp.2017.8076092
[26] Šorel, M., Šroubek, F.:
Fast convolutional sparse coding using matrix inversion lemma. Digital Signal Process. 55 (2016), 44-51.
DOI 10.1016/j.dsp.2016.04.012
[27] Perraudin, N., Shuman, D. I., Puy, G., Vandergheynst, P.: Unlocbox A Matlab convex optimization toolbox using proximal splitting methods (2014).
[28] Pock, T.: Fast Total Variation for Computer Vision. Dissertation Thesis, Graz University of Technology 2008.
[29] Rajmic, P.:
Exact risk analysis of wavelet spectrum thresholding rules. In: Electronics, Circuits and Systems, 2003. ICECS 2003. Proc. 10th IEEE International Conference 2 (2003), pp. 455-458.
DOI 10.1109/icecs.2003.1301820
[30] Rajmic, P., Novosadová, M.:
On the limitation of convex optimization for sparse signal segmentation. In: Proc. 39th International Conference on Telecommunications and Signal Processing, Brno University of Technology 2016, pp. 550-554.
DOI 10.1109/tsp.2016.7760941
[31] Selesnick, I. W., Arnold, S., Dantham, V. R.:
Polynomial smoothing of time series with additive step discontinuities. IEEE Trans. Signal Process. 60 (2012), 12, 6305-6318.
DOI 10.1109/tsp.2012.2214219 |
MR 3006421
[32] Shem-Tov, S., Rosman, G., Adiv, G., Kimmel, R., Bruckstein, A. M.:
Innovations for Shape Analysis. Chap. On Globally Optimal Local Modeling: From Moving Least Squares to Over-parametrization. In: Mathematics and Visualization, Springer 2012, pp. 379-405.
DOI 10.1007/978-3-642-34141-0_17 |
MR 3075841
[34] Tibshirani, R.:
Regression shrinkage and selection via the LASSO. J. Royal Statist. Soc. Ser. B (Methodological) 58 (1996), 1, 267-288.
MR 1379242
[37] Zhang, B., Geng, J., Lai, L.:
Multiple change-points estimation in linear regression models via sparse group lasso. IEEE Trans. Signal Process. 63 (2015), 9, 2209-2224.
DOI 10.1109/tsp.2015.2411220 |
MR 3331995