Previous |  Up |  Next

Article

Title: Note on a conjecture for the sum of signless Laplacian eigenvalues (English)
Author: Chen, Xiaodan
Author: Hao, Guoliang
Author: Jin, Dequan
Author: Li, Jingjian
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 68
Issue: 3
Year: 2018
Pages: 601-610
Summary lang: English
.
Category: math
.
Summary: For a simple graph $G$ on $n$ vertices and an integer $k$ with $1\leq k\leq n$, denote by $\mathcal {S}_k^+(G)$ the sum of $k$ largest signless Laplacian eigenvalues of $G$. It was conjectured that $\mathcal {S}_k^+(G)\leq e(G)+{k+1 \choose 2}$, where $e(G)$ is the number of edges of $G$. This conjecture has been proved to be true for all graphs when $k\in \{1,2,n-1,n\}$, and for trees, unicyclic graphs, bicyclic graphs and regular graphs (for all $k$). In this note, this conjecture is proved to be true for all graphs when $k=n-2$, and for some new classes of graphs. (English)
Keyword: sum of signless Laplacian eigenvalues
Keyword: upper bound
Keyword: clique number
Keyword: girth
MSC: 05C50
MSC: 15A18
idZBL: Zbl 06986959
idMR: MR3851878
DOI: 10.21136/CMJ.2018.0548-16
.
Date available: 2018-08-09T13:08:55Z
Last updated: 2020-10-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147355
.
Reference: [1] Ashraf, F., Omidi, G. R., Tayfeh-Rezaie, B.: On the sum of signless Laplacian eigenvalues of a graph.Linear Algebra Appl. 438 (2013), 4539-4546. Zbl 1282.05087, MR 3034549, 10.1016/j.laa.2013.01.023
Reference: [2] Bai, H.: The Grone-Merris conjecture.Trans. Am. Math. Soc. 363 (2011), 4463-4474. Zbl 1258.05066, MR 2792996, 10.1090/S0002-9947-2011-05393-6
Reference: [3] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs.Universitext, Springer, Berlin (2012). Zbl 1231.05001, MR 2882891, 10.1007/978-1-4614-1939-6
Reference: [4] Cvetković, D., Rowlinson, P., Simić, S.: An Introduction to the Theory of Graph Spectra.London Mathematical Society Student Texts 75, Cambridge University Press, Cambridge (2010). Zbl 1211.05002, MR 2571608, 10.1017/CBO9780511801518
Reference: [5] Du, Z., Zhou, B.: Upper bounds for the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 436 (2012), 3672-3683. Zbl 1241.05074, MR 2900744, 10.1016/j.laa.2012.01.007
Reference: [6] Feng, L., Yu, G.: On three conjectures involving the signless Laplacian spectral radius of graphs.Publ. Inst. Math., Nouv. Sér. 85 (2009), 35-38. Zbl 1265.05365, MR 2536687, 10.2298/PIM0999035F
Reference: [7] Fritscher, E., Hoppen, C., Rocha, I., Trevisan, V.: On the sum of the Laplacian eigenvalues of a tree.Linear Algebra Appl. 435 (2011), 371-399. Zbl 1226.05154, MR 2782788, 10.1016/j.laa.2011.01.036
Reference: [8] Ganie, H. A., Alghamdi, A. M., Pirzada, S.: On the sum of the Laplacian eigenvalues of a graph and Brouwer's conjecture.Linear Algebra Appl. 501 (2016), 376-389. Zbl 1334.05080, MR 3485073, 10.1016/j.laa.2016.03.034
Reference: [9] Grone, R., Merris, R.: The Laplacian spectrum of a graph II.SIAM J. Discrete Math. 7 (1994), 221-229. Zbl 0795.05092, MR 1271994, 10.1137/S0895480191222653
Reference: [10] Haemers, W. H., Mohammadian, A., Tayfeh-Rezaie, B.: On the sum of Laplacian eigenvalues of graphs.Linear Algebra Appl. 432 (2010), 2214-2221. Zbl 1218.05094, MR 2599854, 10.1016/j.laa.2009.03.038
Reference: [11] Rocha, I., Trevisan, V.: Bounding the sum of the largest Laplacian eigenvalues of graphs.Discrete Appl. Math. 170 (2014), 95-103. Zbl 1288.05167, MR 3176708, 10.1016/j.dam.2014.01.023
Reference: [12] Wang, S., Huang, Y., Liu, B.: On a conjecture for the sum of Laplacian eigenvalues.Math. Comput. Modelling 56 (2012), 60-68. Zbl 1255.05118, MR 2935294, 10.1016/j.mcm.2011.12.047
Reference: [13] Yang, J., You, L.: On a conjecture for the signless Laplacian eigenvalues.Linear Algebra Appl. 446 (2014), 115-132. Zbl 1292.05182, MR 3163132, 10.1016/j.laa.2013.12.032
.

Files

Files Size Format View
CzechMathJ_68-2018-3_2.pdf 271.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo