Previous |  Up |  Next

Article

Keywords:
holomorphic automorphism group; Bergman kernel; Reinhardt domain
Summary:
We consider a certain class of unbounded nonhyperbolic Reinhardt domains which is called the twisted Fock-Bargmann-Hartogs domains. By showing Cartan's linearity theorem for our unbounded nonhyperbolic domains, we give a complete description of the automorphism groups of twisted Fock-Bargmann-Hartogs domains.
References:
[1] Ahn, H., Byun, J., Park, J.-D.: Automorphisms of the Hartogs type domains over classical symmetric domains. Int. J. Math. 23 (2012), 1250098, 11 pages. DOI 10.1142/S0129167X1250098X | MR 2959444 | Zbl 1248.32001
[2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349-359. DOI 10.1007/s10455-016-9495-3 | MR 3510521 | Zbl 1355.32004
[3] D'Angelo, J. P.: An explicit computation of the Bergman kernel function. J. Geom. Anal. 4 (1994), 23-34. DOI 10.1007/BF02921591 | MR 1274136 | Zbl 0794.32021
[4] Engliš, M., Zhang, G.: On a generalized Forelli-Rudin construction. Complex Var. Elliptic Equ. 51 (2006), 277-294. DOI 10.1080/17476930500515017 | MR 2200983 | Zbl 1202.32017
[5] Huo, Z.: The Bergman kernel on some Hartogs domains. J. Geom. Anal. 27 (2017), 271-299. DOI 10.1007/s12220-016-9681-3 | MR 3606552 | Zbl 1367.32004
[6] Ishi, H., Kai, C.: The representative domain of a homogeneous bounded domain. Kyushu J. Math. 64 (2010), 35-47. DOI 10.2206/kyushujm.64.35 | MR 2662658 | Zbl 1195.32009
[7] Jarnicki, M., Pflug, P.: First Steps in Several Complex Variables: Reinhardt Domains. EMS Textbooks in Mathematics, European Mathematical Society, Zürich (2008). DOI 10.4171/049 | MR 2396710 | Zbl 1148.32001
[8] Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis. De Gruyter Expositions in Mathematics 9, Walter de Gruyter, Berlin (2013). DOI 10.1515/9783110253863 | MR 3114789 | Zbl 1273.32002
[9] Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group of a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl. 409 (2014), 637-642. DOI 10.1016/j.jmaa.2013.07.007 | MR 3103183 | Zbl 1307.32017
[10] Kim, H., Yamamori, A.: An application of a Diederich-Ohsawa theorem in characterizing some Hartogs domains. Bull. Sci. Math. 139 (2015), 737-749. DOI 10.1016/j.bulsci.2014.11.007 | MR 3407513 | Zbl 1351.32032
[11] Kim, H., Yamamori, A., Zhang, L.: Invariant metrics on unbounded strongly pseudoconvex domains with non-compact automorphism group. Ann. Global Anal. Geom. 50 (2016), 261-295. DOI 10.1007/s10455-016-9511-7 | MR 3554375 | Zbl 1360.32008
[12] Kodama, A.: On the holomorphic automorphism group of a generalized complex ellipsoid. Complex Var. Elliptic Equ. 59 (2014), 1342-1349. DOI 10.1080/17476933.2013.845177 | MR 3210305 | Zbl 1300.32001
[13] Ligocka, E.: On the Forelli-Rudin construction and weighted Bergman projections. Stud. Math. 94 (1989), 257-272. DOI 10.4064/sm-94-3-257-272 | MR 1019793 | Zbl 0688.32020
[14] Loi, A., Zedda, M.: Balanced metrics on Cartan and Cartan-Hartogs domains. Math. Z. 270 (2012), 1077-1087. DOI 10.1007/s00209-011-0842-6 | MR 2892939 | Zbl 1239.53093
[15] Lu, Q.: On the representative domain. Several Complex Variables Proc. 1981 Hangzhou Conf., Birkhäuser, Boston (1984), 199-211. DOI 10.1007/978-1-4612-5296-2_22 | MR 0897597 | Zbl 0564.32014
[16] Ning, J., Zhang, H., Zhou, X.: Proper holomorphic mappings between invariant domains in $\Bbb C^n$. Trans. Am. Math. Soc. 369 (2017), 517-536. DOI 10.1090/tran/6690 | MR 3557783 | Zbl 1351.32003
[17] Rong, F.: On automorphism groups of generalized Hua domains. Math. Proc. Camb. Philos. Soc. 156 (2014), 461-472. DOI 10.1017/S0305004114000048 | MR 3181635 | Zbl 1290.32020
[18] Rong, F.: On automorphisms of quasi-circular domains fixing the origin. Bull. Sci. Math. 140 (2016), 92-98. DOI 10.1016/j.bulsci.2015.02.001 | MR 3446951 | Zbl 1338.32020
[19] Roos, G.: Weighted Bergman kernels and virtual Bergman kernels. Sci. China Ser. A 48 (2005), Suppl., 225-237. DOI 10.1007/BF02884708 | MR 2156503 | Zbl 1125.32001
[20] Springer, G.: Pseudo-conformal transformations onto circular domains. Duke Math. J. 18 (1951), 411-424. DOI 10.1215/S0012-7094-51-01832-7 | MR 0041233 | Zbl 0043.30401
[21] Tsuboi, T.: Bergman representative domains and minimal domains. Jap. J. Math. 29 (1959), 141-148. DOI 10.4099/jjm1924.29.0_141 | MR 0121504 | Zbl 0097.06703
[22] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl. 419 (2014), 703-714. DOI 10.1016/j.jmaa.2014.04.073 | MR 3225398 | Zbl 1293.32002
[23] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between equidimensional Hua domains. Math. Ann. 363 (2015), 1-34. DOI 10.1007/s00208-014-1136-1 | MR 3394371 | Zbl 1330.32007
[24] Yamamori, A.: A remark on the Bergman kernels of the Cartan-Hartogs domains. C. R., Math. Acad. Sci. Paris 350 (2012), 157-160. DOI 10.1016/j.crma.2012.01.005 | MR 2891103 | Zbl 1239.32002
[25] Yamamori, A.: The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function. Complex Var. Elliptic Equ. 58 (2013), 783-793. DOI 10.1080/17476933.2011.620098 | MR 3170660 | Zbl 1272.32002
[26] Yamamori, A.: Automorphisms of normal quasi-circular domains. Bull. Sci. Math. 138 (2014), 406-415. DOI 10.1016/j.bulsci.2013.10.002 | MR 3206476 | Zbl 1288.32003
[27] Yamamori, A.: A generalization of the Forelli-Rudin construction and deflation identities. Proc. Am. Math. Soc. 143 (2015), 1569-1581. DOI 10.1090/S0002-9939-2014-12317-3 | MR 3314070 | Zbl 1321.32004
[28] Yamamori, A.: Non-hyperbolic unbounded Reinhardt domains: non-compact automorphism group, Cartan's linearity theorem and explicit Bergman kernel. Tohoku Math. J. 69 (2017), 239-260. DOI 10.2748/tmj/1498269625 | MR 3682165 | Zbl 06775254
[29] Yin, W.: The Bergman kernels on Cartan-Hartogs domains. Chin. Sci. Bull. 44 (1999), 1947-1951. DOI 10.1007/BF02887114 | MR 1752411 | Zbl 1039.32502
[30] Zedda, M.: Berezin-Engliš' quantization of Cartan-Hartogs domains. J. Geom. Phys. 100 (2016), 62-67. DOI 10.1016/j.geomphys.2015.11.002 | MR 3435762 | Zbl 1330.53104
[31] Zhang, L.: Bergman kernel function on Hua construction of the second type. Sci. China Ser. A 48 (2005), Suppl., 400-412. DOI 10.1007/BF02884724 | MR 2156520 | Zbl 1128.32002
Partner of
EuDML logo