Previous |  Up |  Next

Article

Keywords:
simple Lie superalgebra; superderivation; local superderivation
Summary:
Let $\mathfrak {q}(n)$ be a simple strange Lie superalgebra over the complex field $\mathbb {C}$. In a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over $\mathbb {C}$ and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but $\mathfrak {p}(n)$ is an exception. In this paper, we introduce the definition of the local superderivation on $\mathfrak {q}(n)$, give the structures and properties of the local superderivations of $\mathfrak {q}(n)$, and prove that every local superderivation on $\mathfrak {q}(n)$, $n>3$, is a superderivation.
References:
[1] Albeverio, S., Ayupov, S. A., Kudaybergenov, K. K., Nurjanov, B. O.: Local derivations on algebras of measurable operators. Commun. Contemp. Math. 13 (2011), 643-657. DOI 10.1142/S0219199711004270 | MR 2826440 | Zbl 1230.46056
[2] Alizadeh, R., Bitarafan, M. J.: Local derivations of full matrix rings. Acta Math. Hung. 145 (2015), 433-439. DOI 10.1007/s10474-014-0460-y | MR 3325800 | Zbl 1363.17003
[3] Ayupov, S., Kudaybergenov, K.: Local derivations on finite-dimensional Lie algebras. Linear Algebra Appl. 493 (2016), 381-398. DOI 10.1016/j.laa.2015.11.034 | MR 3452744 | Zbl 06536636
[4] Ayupov, S., Kudaybergenov, K., Nurjanov, B., Alauadinov, A.: Local and 2-local derivations on noncommutative Arens algebras. Math. Slovaca 64 (2014), 423-432. DOI 10.2478/s12175-014-0215-9 | MR 3201356 | Zbl 1349.46071
[5] Kac, V. G.: Lie superalgebras. Adv. Math. 26 (1977), 8-96. DOI 10.1016/0001-8708(77)90017-2 | MR 0486011 | Zbl 0366.17012
[6] Kadison, R. V.: Local derivations. J. Algebra 130 (1990), 494-509. DOI 10.1016/0021-8693(90)90095-6 | MR 1051316 | Zbl 0751.46041
[7] Mukhamedov, F., Kudaybergenov, K.: Local derivations on subalgebras of $\tau$-measurable operators with respect to semi-finite von Neumann algebras. Mediterr. J. Math. 12 (2015), 1009-1017. DOI 10.1007/s00009-014-0447-5 | MR 3376827 | Zbl 1321.47089
[8] Musson, I. M.: Lie Superalgebras and Enveloping Algebras. Graduate Studies in Mathematics 131, American Mathematical Society, Providence (2012). DOI 10.1090/gsm/131 | MR 2906817 | Zbl 1255.17001
[9] Nowicki, A., Nowosad, I.: Local derivations of subrings of matrix rings. Acta Math. Hung. 105 (2004), 145-150. DOI 10.1023/B:AMHU.0000045539.32024.db | MR 2093937 | Zbl 1070.16035
[10] Scheunert, M.: The Theory of Lie Superalgebras. An Introduction. Lecture Notes in Mathematics 716, Springer, Berlin (1979). DOI 10.1007/bfb0070929 | MR 0537441 | Zbl 0407.17001
[11] Zhang, J.-H., Ji, G.-X., Cao, H.-X.: Local derivations of nest subalgebras of von Neumann algebras. Linear Algebra Appl. 392 (2004), 61-69. DOI 10.1016/j.laa.2004.05.015 | MR 2095907 | Zbl 1067.46063
Partner of
EuDML logo