Previous |  Up |  Next

Article

Keywords:
automorphism; metacyclic group; linear congruence equation
Summary:
A metacyclic group $H$ can be presented as $\langle \alpha ,\beta \colon \alpha ^{n}=1$, $ \beta ^{m}=\alpha ^{t}$, $\beta \alpha \beta ^{-1}=\nobreak \alpha ^{r}\rangle $ for some $n$, $m$, $t$, $r$. Each endomorphism $\sigma $ of $H$ is determined by $\sigma (\alpha )=\alpha ^{x_{1}}\beta ^{y_{1}}$, $ \sigma (\beta )=\alpha ^{x_{2}}\beta ^{y_{2}}$ for some integers $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$. We give sufficient and necessary conditions on $x_{1}$, $x_{2}$, $y_{1}$, $y_{2}$ for $\sigma $ to be an automorphism.
References:
[1] Bidwell, J. N. S., Curran, M. J.: The automorphism group of a split metacyclic $p$-group. Arch. Math. 87 (2006), 488-497. DOI 10.1007/s00013-006-1899-z | MR 2283679 | Zbl 1116.20016
[2] Chen, H.-M.: Reduction and regular t-balanced Cayley maps on split metacyclic 2-groups. Available at ArXiv:1702.08351 [math.CO] (2017), 14 pages.
[3] Curran, M. J.: The automorphism group of a split metacyclic 2-group. Arch. Math. 89 (2007), 10-23. DOI 10.1007/s00013-007-2107-5 | MR 2322775 | Zbl 1125.20015
[4] Curran, M. J.: The automorphism group of a nonsplit metacyclic $p$-group. Arch. Math. 90 (2008), 483-489. DOI 10.1007/s00013-008-2583-2 | MR 2415289 | Zbl 1149.20019
[5] Davitt, R. M.: The automorphism group of a finite metacyclic $p$-group. Proc. Am. Math. Soc. 25 (1970), 876-879. DOI 10.2307/2036770 | MR 0285594 | Zbl 0202.02501
[6] Golasiński, M., Gonçalves, D. L.: On automorphisms of split metacyclic groups. Manuscripta Math. 128 (2009), 251-273. DOI 10.1007/s00229-008-0233-4 | MR 2471317 | Zbl 1160.20017
[7] Hempel, C. E.: Metacyclic groups. Commun. Algebra 28 (2000), 3865-3897. DOI 10.1080/00927870008827063 | MR 1767595 | Zbl 0993.20013
[8] Zassenhaus, H. J.: The Theory of Groups. Chelsea Publishing Company, New York (1958). MR 0091275 | Zbl 0083.24517
Partner of
EuDML logo