[1] Abbassi, W., Rehman, F.: 
Adaptive integral sliding mode stabilization of nonholonomic drift-free systems. Math. Problems Engrg. 2016 (2016), 1-11. 
DOI 10.1155/2016/9617283 | 
MR 3576111 
[2] Ge, S. sam, Wang, J., Lee, T. heng, Zhou, GY.: 
Adaptive robust stabilization of dynamic nonholonomic chained systems. J. Field Robotics 18 (2001), 3, 119-133. 
DOI 10.1002/rob.1010.abs 
[3] Kolmanovsky, I., McClamroch, N. H.: 
Developments in nonholonomic control problems. IEEE Control Systems 15 (1995), 6, 20-36. 
DOI 10.1109/37.476384 
[6] Li, P., Zheng, Z.: 
Global finite-time stabilization of planar nonlinear systems with disturbance. Asian J. Control 14 (2012), 3, 851-858. 
DOI 10.1002/asjc.377 | 
MR 2926015 
[7] Li, Z., Xiao, H., Yang, C., Zhao, Y.: 
Model predictive control of nonholonomic chained systems using general projection neural networks optimization. IEEE Trans. Systems Man Cybernetics: Systems 45 (2015), 10, 1313-1321. 
DOI 10.1109/tsmc.2015.2398833 
[9] Mobayen, S.: 
Fast terminal sliding mode tracking of non-holonomic systems with exponential decay rate. IET Control Theory Appl. 9 (2015), 8, 1294-1301. 
DOI 10.1049/iet-cta.2014.1118 | 
MR 3364614 
[10] Mobayen, S.: 
Finite-time tracking control of chained-form nonholonomic systems with external disturbances based on recursive terminal sliding mode method. Nonlinear Dynamics 80 (2015), 1-2, 669-683. 
DOI 10.1007/s11071-015-1897-4 | 
MR 3324289 
[11] Mobayen, S., Baleanu, D.: 
Linear matrix inequalities design approach for robust stabilization of uncertain nonlinear systems with perturbation based on optimally-tuned global sliding mode control. J. Vibration Control 23, (2017), 8, 1285-1295. 
DOI 10.1177/1077546315592516 | 
MR 3635449 
[12] Moreno, J. A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: Proc. 47th IEEE Conference on Decision and Control 2008, pp. 2856-2861
[14] Murray, R. M., Sastry, S. S.: 
Steering nonholonomic systems in chained form. In: Proc. 30th IEEE Conference on Decision and Control 2 (1991), pp. 1121-1126. 
DOI 10.1109/cdc.1991.261508 | 
MR 1224308 
[16] Picó, J., Picó-Marco, E., Vignoni, A., Battista, H. De: 
Stability preserving maps for finite-time convergence: super-twisting sliding-mode algorithm. Automatica 49 (2013), 2, 534-539. 
DOI 10.1016/j.automatica.2012.11.022 | 
MR 3004721 
[19] Sordalen, O. J., Egeland, O.: 
Exponential stabilization of nonholonomic chained systems. IEEE Trans. Automat. Control 40 (1995), 1, 35-49. 
DOI 10.1109/9.362901 | 
MR 1344316 
[20] Wang, Y., Miao, Z., Zhong, H., Pan, Qi.: 
Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach. IEEE Trans. Control Systems Technol. 23 (2015), 4, 1440-1450. 
DOI 10.1109/tcst.2014.2375812 
[21] Utkin, V., Guldner, J., Shi, J., Ge, S., Lewis, F.: 
Sliding Mode Control in Electro-mechanical Systems. Second Edition. Boca Raton: CRC Press, 2009. 
DOI 10.1201/9781420065619