Previous |  Up |  Next

Article

Title: Contact Quantization: Quantum Mechanics = Parallel transport (English)
Author: Herczeg, G.
Author: Latini, E.
Author: Waldron, Andrew
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 5
Year: 2018
Pages: 281-298
Summary lang: English
.
Category: math
.
Summary: Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as points on an underlying phase-spacetime and reduces classical mechanics to contact topology. Contact quantization describes quantum dynamics in terms of parallel transport for a flat connection; the ultimate goal being to also handle quantum systems in terms of contact topology. Our main result is a proof of local, formal gauge equivalence for a broad class of quantum dynamical systems—just as classical dynamics depends on choices of clocks, local quantum dynamics can be reduced to a problem of studying gauge transformations. We further show how to write quantum correlators in terms of parallel transport and in turn matrix elements for Hilbert bundle gauge transformations, and give the path integral formulation of these results. Finally, we show how to relate topology of the underlying contact manifold to boundary conditions for quantum wave functions. (English)
Keyword: quantum mechanics
Keyword: contact geometry
Keyword: quantization
Keyword: contact topology
Keyword: flat connections
Keyword: clock ambiguity
MSC: 53D10
MSC: 81S10
idZBL: Zbl 06997356
idMR: MR3887355
DOI: 10.5817/AM2018-5-281
.
Date available: 2018-12-06T16:16:14Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147505
.
Reference: [1] Albrecht, A., Iglesias, A.: The clock ambiguity and the emergence of physical laws.Phys. Rev. D 77 (2008), 063506; arXiv:0708.2743 [hep-th]; S. B. Gryb, Jacobi's Principle and the Disappearance of Time Phys. Rev. D 81 (2010), 044035, arXiv:0804.2900 [gr-qc]; S. B. Gryb and K. Thebault, The role of time in relational quantum theories Found. Phys. 42 (2012),1210–1238 arXiv:1110.2429 [gr-qc]. MR 2996626, 10.1103/PhysRevD.77.063506
Reference: [2] Batalin, I., Fradkin, E., Fradkina, T.: Another version for operatorial quantization of dynamical systems with irreducible constraints.Nuclear Phys. B 314 (1989), 158–174, I.A. Batalin and I.V. Tyutin, Existence theorem for the effective gauge algebra in the generalized canonical formalism with abelian conversion of second-class constraints, Internat. J. Modern Phys. A 6 (1991), 3255–3282. MR 0984074
Reference: [3] Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Quantum Mechanics as a deformation of classical mechanics.Lett. Math. Phys. 1 (1977), 521–530. MR 0674337, 10.1007/BF00399745
Reference: [4] Bieliavsky, P., Cahen, M., Gutt, S., Rawnsley, J., Schwachhöfer, L.: Symplectic connection.Int. J. Geom. Methods Mod. Phys. 3 (2006), 375–426, arXiv:math/0511194. MR 2232865, 10.1142/S021988780600117X
Reference: [5] Bruce, A.J.: Contact structures and supersymmetric mechanics.arXiv:1108.5291 [math-ph].
Reference: [6] Čap, A., Slovák, J.: .
Reference: [7] Cattaneo, A.S., Felder, G.: A path integral approach to the Kontsevich quantization formula.Comm. Math. Phys. 212 (2000), 591–611, arXiv:math/9902090. Zbl 1038.53088, MR 1779159, 10.1007/s002200000229
Reference: [8] Dupré, M.J.: Classifying Hilbert bundles.J. Funct. Anal. 15 (1974), 244–278. MR 0346541, 10.1016/0022-1236(74)90035-4
Reference: [9] Fedosov, B.V.: A simple geometrical construction of deformation quantization.J. Differential Geom. 40 (1994), 213–238. Zbl 0812.53034, MR 1293654, 10.4310/jdg/1214455536
Reference: [10] Fitzpatrick, S.: On the geometric quantization of contact manifolds.J. Geom. Phys. 61 (2011), 2384–2399. MR 2838515, 10.1016/j.geomphys.2011.07.011
Reference: [11] Fox, D.J.F.: Contact projective structures.Indiana Univ. Math. J. 54 (2005), 1547–1598, arXiv:math/0402332. Zbl 1093.53083, MR 2189678
Reference: [12] Fradkin, E.S., Vilkovisky, G.: Quantization of relativistic systems with constraints.Phys. Lett. B 55 (1975), 224–226, I.A. Batalin and G.A. Vilkovisky, Relativistic s-matrix of dynamical systems with boson and fermion constraints, Phys. Lett. B 69 (1977), 309–312; E.S. Fradkin and T. Fradkina, Phys. Lett. B 72 (1978), 343–348; I. Batalin and E.S. Fradkin, La Rivista del Nuovo Cimento 9 (1986), 1–48. MR 0411451, 10.1016/0370-2693(75)90448-7
Reference: [13] Geiges, H.: An Introduction to Contact Topology.Cambridge University Pres, 2008, and P. Ševera, Contact geometry in lagrangian mechanics, J. Geom. Phys. 29 (1999), 235–242; A. Bravetti, C.S. Lopez-Monsalvo and F. Nettel, Contact symmetries and Hamiltonian thermodynamics, Ann. Phys. 361 (2015), 377-400, arXiv:1409.7340; A. Bravetti, H. Cruz and D. Tapias, Contact Hamiltonian dynamics, arXiv:1604.08266[math-ph]. MR 3388763
Reference: [14] Grigoriev, M.A., Lyakhovich, S.L.: Fedosov Deformation Quantization as a BRST Theory.Comm. Math. Phys. 218 (2001), 437–457, hep-th/0003114. See also G. Barnich and M. Grigoriev, A. Semikhatov and I. Tipunin, Parent Field Theory and Unfolding in BRST First-Quantized Terms, 260, (2005), 147–181, hep-th/0406192. MR 2175993, 10.1007/PL00005559
Reference: [15] Gukov, S., Witten, E.: Branes and quantization.Adv. Theor. Math. Phys. 13 (2009), 1445–1518, arXiv:0809.0305 [hep-th]. MR 2672467
Reference: [16] Herczeg, G., Waldron, A.: Contact geometry and quantum mechanics.Phys.Lett. B 781 (2018), 312–315, arXiv:1709.04557 [hep-th] . 10.1016/j.physletb.2018.04.008
Reference: [17] Kashiwara, M.: Quantization of contact manifolds.Publ. Res. Inst. Math. Sci. 32 (1) (1996), 1–7. MR 1384750, 10.2977/prims/1195163179
Reference: [18] Kontsevich, M.: Deformation quantization of Poisson manifolds.Lett. Math. Phys. 66 (2003), 157–216, arXiv:q-alg/9709040. Zbl 1058.53065, MR 2062626, 10.1023/B:MATH.0000027508.00421.bf
Reference: [19] Krýsl, S.: Cohomology of the de Rham complex twisted by the oscillatory representation.Differential Geom. Appl. 33 (2014), 290–297, arXiv:1304.5704 [math.DG]. MR 3159964, 10.1016/j.difgeo.2013.10.007
Reference: [20] Małkiewicz, P., Miroszewski, A.: Internal clock formulation of quantum mechanics.Phys. Rev. D 96 (2017), 046003, arXiv:1706.00743 [gr-qc]. MR 3852958, 10.1103/PhysRevD.96.046003
Reference: [21] Manin, Y.: Topics in Noncommutative Geometry.M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1991. Zbl 0724.17007, MR 1095783
Reference: [22] Rajeev, S.G.: Quantization of contact manifolds and thermodynamics.Ann. Physics 323 (2008), 768–782. MR 2404789, 10.1016/j.aop.2007.05.001
Reference: [23] Schwarz, A.S.: Superanalogs of symplectic and contact geometry and their applications to quantum field theory.Topics in statistical and theoretical physics, vol. 177, Amer. Math. Soc. Transl. Ser. 2, 1996, Adv. Math. Sci., 32, arXiv:hep-th/9406120, pp. 203–218. MR 1409176
Reference: [24] Yoshioka, A.: Contact Weyl manifold over a symplectic manifold. Lie groups, geometric structures and differential equations – one hundred years after Sophus Lie.Adv. Stud. Pure Math. 37 (2002), 459–493, A. Yoshioka, Il Nuov. Cim. 38C (2015), 173. MR 1980911
.

Files

Files Size Format View
ArchMathRetro_054-2018-5_4.pdf 732.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo