[1] Ahn, H., Cho, S.: 
On the mapping properties of the Bergman projection on pseudoconvex domains with one degenerate eigenvalue. Complex Variables Theory Appl., 39, 4, 1999, 365-379,  
DOI 10.1080/17476939908815203 | 
MR 1727631[2] Arsenović , M., Shamoyan, R.: 
On distance estimates and atomic decomposition on spaces of analytic functions on strictly pseudoconvex domains. Bulletin Korean Math. Society, 52, 1, 2015, 85-103,  
MR 3313426[3] Beatrous, F.: 
Estimates for derivatives of holomorphic functions in strongly pseudoconvex domains. Math. Zam., 191, 1, 1986, 91-116,  
DOI 10.1007/BF01163612 | 
MR 0812605[4] Charpentier, P., Dupain, Y.: 
Estimates for the Bergman and Szegö projections for pseudoconvex domains of finite type with locally diagonalizable Levi form. Publ. Mat., 50, 2006, 413-446,  
DOI 10.5565/PUBLMAT_50206_08 | 
MR 2273668[5] Chen, B.: 
Weighted Bergman kernel: asymptotic behavior, applications and comparison results. Studia Mathematica, 174, 2, 2006, 111-130,  
DOI 10.4064/sm174-2-1 | 
MR 2238457[6] Cho, H.R., Kwon, E.G.: 
Embedding of Hardy spaces into weighted Bergman spaces in bounded domains with $C^2$ boundary. Illinois J. Math., 48, 3, 2004, 747-757,  
DOI 10.1215/ijm/1258131050 | 
MR 2114249[8] Ehsani, D., Lieb, I.: 
$L^p$-estimates for the Bergman projection on strictly pseudoconvex nonsmooth domains. Math. Nachr., 281, 7, 2008, 916-929,  
DOI 10.1002/mana.200710649 | 
MR 2431567[9] Gheorghe, L.G.: 
Interpolation of Besov spaces and applications. Le Matematiche, LV, Fasc. I, 2000, 29-42,  
MR 1888995[10] Jevtić, M.: 
Besov spaces on bounded symmetric domains. Matematički vesnik, 49, 1997, 229-233,  
MR 1611753[11] Lanzani, L., Stein, E.M.: 
The Bergman projection in $L^p$ for domains with minimal smoothness. Illinois Journal of Mathematics, 56, 1, 2012, 127-154,  
DOI 10.1215/ijm/1380287464 | 
MR 3117022[12] McNeal, J.D., Stein, E.M.: 
Mapping properties of the Bergman projection on convex domain of finite type. Duke Math. J., 73, 1994, 177-199,  
MR 1257282[13] Phong, D.H., Stein, E.M.: 
Estimates for the Bergman and Szegö projection on strongly pseudoconvex domains. Duke Math. J., 44, 1977, 695-704,  
MR 0450623[15] Shamoyan, R.F., Mihić , O.: 
Extremal Problems in Certain New Bergman Type Spaces in Some Bounded Domains in $\mathbb {C}^{n}$. Journal of Function Spaces, 2014, 2014, p. 11, Article ID 975434.  
MR 3248932[16] Shamoyan, R.F., Mihić, O.: 
On distance function in some new analytic Bergman type spaces in $\mathbb {C}^{n}$. Journal of Function Spaces, 2014, 2014, p. 10, Article ID 275416.  
MR 3208648[17] Shamoyan, R.F., Mihić, O.: 
On new estimates for distances in analytic function spaces in higher dimension. Siberian Electronic Mathematical Reports, 6, 2009, 514-517,  
MR 2586703 | 
Zbl 1299.30106[19] Zhu, K.: 
Holomorphic Besov spaces on bounded symmetric domains, III. Indiana University Mathematical Journal, 44, 1995, 1017-1031,  
MR 1386759