Previous |  Up |  Next

Article

Keywords:
stochastic games; Nash equilibrium; Markov decision processes; total rewards
Summary:
The main objective of this paper is to find structural conditions under which a stochastic game between two players with total reward functions has an $\epsilon$-equilibrium. To reach this goal, the results of Markov decision processes are used to find $\epsilon$-optimal strategies for each player and then the correspondence of a better answer as well as a more general version of Kakutani's Fixed Point Theorem to obtain the $\epsilon$-equilibrium mentioned. Moreover, two examples to illustrate the theory developed are presented.
References:
[1] Aliprantis, C. D., Border, K. C.: Infinite Dimensional Analysis. Springer 2006. MR 2378491 | Zbl 1156.46001
[2] Ash, R. B.: Real Analysis and Probability. Academic Press, New York 1972. MR 0435320
[3] Bartle, R.: The Elements of Real Analysis. John Wiley and Sons, Inc. 1964. DOI 10.1002/zamm.19650450519 | MR 0393369
[4] Cavazos-Cadena, R., Montes-de-Oca, R.: Optimal and nearly optimal policies in Markov decision chains with nonnegative rewards and risk-sensitive expected total-reward criterion. In: Markov Processes and Controlled Markov Chains 2002 (Z. Hou, J. A. Filar and A. Chen, eds.), Kluwer Academic Publishers, pp. 189-221. DOI 10.1007/978-1-4613-0265-0_11 | MR 2022426
[5] Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer-Verlag, New York 1997. MR 1418636
[6] Habil, E. D.: Double sequences and double series. The Islamic Univ. J., Series of Natural Studies and Engineering 14 (2006), 1-32. (This reference is available at the Islamic University Journal's site: http://journal.iugaza.edu.ps/index.php/IUGNS/article/view/1594/1525.)
[7] Hernández-Lerma, O., Lasserre, J. B.: Discrete-Time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996. DOI 10.1007/978-1-4612-0729-0 | MR 1363487 | Zbl 0840.93001
[8] Hordijk, A.: Dynamic Programming and Markov Potential Theory. Mathematical Centre Tracts 51, Amsterdam 1974. MR 0432227
[9] Jaśkiewicz, A., Nowak, A. S.: Stochastic games with unbounded payoffs: Applications to robust control in Economics. Dyn. Games Appl. 1 (2011), 2, 253-279. DOI 10.1007/s13235-011-0013-8 | MR 2804096
[10] Kakutani, S.: A generalization of Brouwer's fixed point theorem. Duke Math. J. 8 (1942), 457-459. DOI 10.1215/s0012-7094-41-00838-4 | MR 0004776
[11] Kelley, J. L.: General Topology. Springer, New York 1955. MR 0070144
[12] Köthe, G.: Topological Vector Spaces I. Springer-Verlag, 1969. MR 0248498
[13] Puterman, M.: Markov Decision Processes. John Wiley and Sons, Inc. New Jersey 1994. MR 1270015 | Zbl 1184.90170
[14] Shapley, L. S.: Stochastic games. Proc. Nat. Acad. Sci. U. S. A. 39 (1953), 1095-1100. DOI 10.1073/pnas.39.10.1095 | MR 0061807 | Zbl 1180.91042
[15] Thuijsman, F.: Optimality and Equilibria in Stochastic Games. CW1 Tract-82, Amsterdam 1992. MR 1171220
[16] Zeidler, E.: Nonlinear Functional Analysis and its Applications. Springer-Verlag, New York Inc. 1988. MR 0816732
Partner of
EuDML logo