[2] Argyros I. K.: 
Computational Theory of Iterative Methods. Studies in Computational Mathematics, 15, Elsevier, Amsterdam, 2007. 
MR 2356038 | 
Zbl 1147.65313 
[3] Argyros I. K., Cho Y. J., George S.: 
Local convergence for some third-order iterative methods under weak conditions. J. Korean Math. Soc. 53 (2016), no. 4, 781–793. 
DOI 10.4134/JKMS.j150244 | 
MR 3521238 
[4] Argyros I. K., George S.: 
Ball convergence of a sixth order iterative method with one parameter for solving equations under weak conditions. Calcolo 53 (2016), no. 4, 585–595. 
DOI 10.1007/s10092-015-0163-y | 
MR 3574604 
[5] Argyros I. K., Magreñán Á. A.: 
Local convergence analysis of proximal Gauss-Newton method for penalized nonlinear least squares problems. Appl. Math. Comput. 241 (2014), 401–408. 
MR 3223438 
[6] Argyros I. K., Szidarovszky F.: 
The Theory and Applications of Iteration Methods. Systems Engineering Series, CRC Press, Boca Raton, 1993. 
MR 1272012 
[8] Cordero A., Torregrosa J. R.: 
Variants of Newton's method for functions of several variables. Appl. Math. Comput. 183 (2006), no. 1, 199–208. 
MR 2282802 
[9] Cordero A., Torregrosa J. R.: 
Variants of Newton's method using fifth-order quadrature formulas. Appl. Math. Comput. 190 (2007), no. 1, 686–698. 
MR 2338747 
[10] Ezquerro J. A., Hernández M. A., Romero A. N.: Approximacion de soluciones de algunas equacuaciones integrals de Hammerstein mediante metodos iterativos tipo. Newton, XXI Congresode ecuaciones diferenciales y aplicaciones Universidad de Castilla-La Mancha, Ciudad Real, 2009, 8 pages.
[11] Grau-Sánchez M., Grau À., Noguera M.: 
On the computational efficiency index and some iterative methods for solving systems of non-linear equations. J. Comput. Appl. Math. 236 (2011), no. 6, 1259–1266. 
DOI 10.1016/j.cam.2011.08.008 | 
MR 2854048 
[17] Ren H., Argyros I. K.: 
Improved local analysis for a certain class of iterative methods with cubic convergence. Numer. Algorithms 59 (2012), no. 4, 505–521. 
DOI 10.1007/s11075-011-9501-6 | 
MR 2892562 
[18] Rheinboldt W. C.: 
An adaptive continuation process for solving systems of nonlinear equations. Mathematical models and numerical methods, Banach Center Publ., 3, PWN, Warszawa, 1978, pages 129–142. 
MR 0514377 | 
Zbl 0378.65029 
[19] Shah F. A., Noor M. A.: 
Some numerical methods for solving nonlinear equations by using decomposition technique. Appl. Math. Comput. 251 (2015), 378–386. 
MR 3294725 
[21] Traub J. F.: 
Iterative Methods for the Solution of Equations. AMS Chelsea Publishing, New York, 1982. 
Zbl 0672.65025