[9] Çaylı, G. D.:
Characterizing ordinal sum for t-norms and t-conorms on bounded lattices. In: Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing (J. Kacprzyk, E. Szmidt, S. Zadrozny, K. Atanassov, M. Krawczak, eds.), vol. 641 Springer, Cham 2018, pp. 443-454.
DOI 10.1007/978-3-319-66830-7_40
[13] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators. In: EUFIT 96, Aachen 1996.
[17] Ertuğrul, Ü., Karaçal, F., Mesiar, R.:
Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817.
DOI 10.1002/int.21713
[20] Grabisch, M., Nguyen, H. T., Walker, E. A.:
Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference. Kluwer Academic Publishers, Dordrecht 1995.
MR 1472733
[22] Höhle, U.:
Commutative, residuated SOH-monoids, Non-classical logics and their applications to fuzzy subsets. In: A handbook of the mathematical foundations of fuzzy set theory, theory and decision library series B: mathematical and statistical methods (K. Höhle, ed.), vol. 32. The Netherlands Kluwer, Dordrecht 1995.
MR 1345641