[2] Baczyński, M., Jayaram, B.:
Fuzzy implications (Studies in Fuzziness and Soft Computing, Vol. 231. Springer, Berlin Heidelberg 2008.
MR 2428086
[4] Dai, S. S., Pei, D. W., Wang, S. M.:
Perturbation of fuzzy sets and fuzzy reasoning based on normalized Minkowski distances. Fuzzy Set Syst. 189 (2012), 63-73.
DOI 10.1016/j.fss.2011.07.012 |
MR 2871353
[6] Liu, F., Zhang, W. G., Fu, J. H.:
A new method of obtaining the priority weights from an interval fuzzy preference relation. Inform. Sci. 185 (2012), 32-42.
DOI 10.1016/j.ins.2011.09.019
[7] Liu, F., Zhang, W. G., Wang, Z. X.:
A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making. Eur. J. Oper. Res. 218 (2012), 747-754.
DOI 10.1016/j.ejor.2011.11.042 |
MR 2881747
[9] Fodor, J., Roubens, M.:
Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, 1994.
DOI 10.1007/978-94-017-1648-2
[10] Gottwald, S.:
A Treatise on Many-Valued Logics. Research Studies, Studies in Logic and Computation 9, Baldock 2001.
MR 1856623 |
Zbl 1048.03002
[11] Guo, F. F., Chen, T. Y., Xia, Z. Q.:
Triple I methods for fuzzy reasoning based on maximum fuzzy entropy principle. Fuzzy Syst. Math. 17 (2003), 55-59.
MR 2026787
[13] Jayaram, B.:
On the law of importation $(x\wedge y) \rightarrow z \equiv (x\rightarrow (y\rightarrow z))$ in fuzzy logic. IEEE Trans. Fuzzy Syst. 16 (2008), 130-144.
DOI 10.1109/tfuzz.2007.895969
[14] Jaynes, E. T.:
Where do we stand on maximum entropy?. In: The Maximum Entropy Formalism (R. .D. Levine and M. Tribus, eds.), MIT Press, Cambridge 1978, pp. 15-118.
MR 0521743
[20] Luo, M. X., Liu, B.:
Robustness of interval-valued fuzzy inference triple I algorithms based on normalized Minkowski distance. J. Log. Algebr. Methods 86 (2017), 298-307.
DOI 10.1016/j.jlamp.2016.09.006 |
MR 3575372
[21] Mas, M., Monserrat, M., Torrens, J., Trillas, E.:
A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121.
DOI 10.1109/tfuzz.2007.896304
[23] Pang, L. M., Tay, K. M., Lim, C. P.:
Monotone fuzzy rule relabeling for the zero-order TSK fuzzy inference system. IEEE Trans. Fuzzy Syst. 24 (2016), 1455-1463.
DOI 10.1109/tfuzz.2016.2540059
[24] Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press/Francis and Taylor, Boca Raton 2013.
[26] Pedrycz, W., Wang, X. M.:
Designing fuzzy sets with the use of the parametric principle of justifiable granularity. IEEE Trans. Fuzzy Syst. 24 (2016), 489-496.
DOI 10.1109/tfuzz.2015.2453393
[30] Sarkoci, P., Šabo, M.:
Information boundedness principle in fuzzy inference process. Kybernetika 38 (2002), 327-338.
MR 1944313
[32] Tang, Y. M.:
Differently implicational hierarchical inference algorithm under interval-valued fuzzy environment. In: Proc. 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), Istanbul, pp. 1-8.
DOI 10.1109/fuzz-ieee.2015.7337944 |
MR 3324890
[35] Tang, Y. M., Ren, F. J.:
Variable differently implicational algorithm of fuzzy inference. J. Intell. Fuzzy Syst. 28 (2015), 1885-1897.
DOI 10.3233/IFS-141476 |
MR 3324890
[36] Tang, Y. M., Ren, F. J.:
Fuzzy systems based on universal triple I method and their response functions. Int. J. Inf. Tech. Decis. 16 (2017), 443-471.
DOI 10.1142/s0219622014500746
[37] Tang, Y. M., Ren, F. J., Chen, Y. X.:
Differently implicational $\alpha$-universal triple I restriction method of (1, 2, 2) type. J. Syst. Eng. Electron. 23 (2012), 560-573.
DOI 10.1109/jsee.2012.00070
[39] Tang, Y. M., Yang, X. Z., Yue, F.:
Universal triple I method with maximum fuzzy entropy employing R-implications. In: Proc. the 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2013), pp. 125-129.
DOI 10.1109/fskd.2013.6816179
[40] Wang, L. X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs, NJ, 1997.
[43] Wang, G. J., Zhou, H. J.: Introduction to Mathematical Logic and Resolution Principle. Co-published by Science Press and Alpha International Science Ltd., 2009.
[44] Yang, X. Y., Yu, F. S., Pedrycz, W.:
Long-term forecasting of time series based on linear fuzzy information granules and fuzzy inference system. Int. J. Approx. Reasoning 81 (2017), 1-27.
DOI 10.1016/j.ijar.2016.10.010 |
MR 3589730