Previous |  Up |  Next

Article

Keywords:
fuzzy inference; fuzzy entropy; compositional rule of inference; continuity
Summary:
Aiming at the previously-proposed entropy-based differently implicational algorithm of fuzzy inference, this study analyzes its continuity. To begin with, for the FMP (fuzzy modus ponens) and FMT (fuzzy modus tollens) problems, the continuous as well as uniformly continuous properties of the entropy-based differently implicational algorithm are demonstrated for the Tchebyshev and Hamming metrics, in which the R-implications derived from left-continuous t-norms are employed. Furthermore, four numerical fuzzy inference examples are provided, and it is found that the entropy-based differently implicational algorithm can obtain more reasonable solution in contrast with the fuzzy entropy full implication algorithm. Finally, in the entropy-based differently implicational algorithm, we point out that the first fuzzy implication reflects the effect of rule base, and that the second fuzzy implication embodies the inference mechanism.
References:
[1] Baczyński, M., Jayaram, B.: (S,N)- and R-implications: A state-of-the-art survey. Fuzzy Set Syst. 159 (2008), 1836-1859. DOI 10.1016/j.fss.2007.11.015 | MR 2428086
[2] Baczyński, M., Jayaram, B.: Fuzzy implications (Studies in Fuzziness and Soft Computing, Vol. 231. Springer, Berlin Heidelberg 2008. MR 2428086
[3] Chaudhuria, B. B., Rosenfeldb, A.: A modified Hausdorff distance between fuzzy sets. Inform. Sci. 118 (1999), 159-171. DOI 10.1016/s0020-0255(99)00037-7 | MR 1723219
[4] Dai, S. S., Pei, D. W., Wang, S. M.: Perturbation of fuzzy sets and fuzzy reasoning based on normalized Minkowski distances. Fuzzy Set Syst. 189 (2012), 63-73. DOI 10.1016/j.fss.2011.07.012 | MR 2871353
[5] Dai, S. S., Pei, D. W., Guo, D. H.: Robustness analysis of full implication inference method. Int. J. Approx. Reason. 54 (2013), 653-666. DOI 10.1016/j.ijar.2012.11.007 | MR 3041100
[6] Liu, F., Zhang, W. G., Fu, J. H.: A new method of obtaining the priority weights from an interval fuzzy preference relation. Inform. Sci. 185 (2012), 32-42. DOI 10.1016/j.ins.2011.09.019
[7] Liu, F., Zhang, W. G., Wang, Z. X.: A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making. Eur. J. Oper. Res. 218 (2012), 747-754. DOI 10.1016/j.ejor.2011.11.042 | MR 2881747
[8] Fodor, J. C.: Contrapositive symmetry of fuzzy implications. Fuzzy Set Syst. 69 (1995), 141-156. DOI 10.1016/0165-0114(94)00210-x | MR 1317882
[9] Fodor, J., Roubens, M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht, 1994. DOI 10.1007/978-94-017-1648-2
[10] Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies, Studies in Logic and Computation 9, Baldock 2001. MR 1856623 | Zbl 1048.03002
[11] Guo, F. F., Chen, T. Y., Xia, Z. Q.: Triple I methods for fuzzy reasoning based on maximum fuzzy entropy principle. Fuzzy Syst. Math. 17 (2003), 55-59. MR 2026787
[12] Hong, D. H., Hwang, S. Y.: A note on the value similarity of fuzzy systems variable. Fuzzy Set Syst. 66 (1994), 383-386. DOI 10.1016/0165-0114(94)90107-4 | MR 1300296
[13] Jayaram, B.: On the law of importation $(x\wedge y) \rightarrow z \equiv (x\rightarrow (y\rightarrow z))$ in fuzzy logic. IEEE Trans. Fuzzy Syst. 16 (2008), 130-144. DOI 10.1109/tfuzz.2007.895969
[14] Jaynes, E. T.: Where do we stand on maximum entropy?. In: The Maximum Entropy Formalism (R. .D. Levine and M. Tribus, eds.), MIT Press, Cambridge 1978, pp. 15-118. MR 0521743
[15] Jaynes, E. T.: On the rationale of maximum-entropy methods. Proc. IEEE, 70 (1982), 939-952. DOI 10.1109/proc.1982.12425
[16] Jenei, S.: Continuity on Zadeh's compositional rule of inference. Fuzzy Set Syst. 104 (1999), 333-339. DOI 10.1016/s0165-0114(97)00198-x | MR 1688064
[17] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[18] Li, H. X.: Probability representations of fuzzy systems. Sci. China Ser. F-Inf. Sci. 49 (2006), 339-363. DOI 10.1007/s11432-006-0339-9 | MR 2250341
[19] Li, H., Lee, E. S.: Interpolation representations of fuzzy logic systems. Comput. Math. Appl. 45 (2003), 1683-1693. DOI 10.1016/s0898-1221(03)00147-0 | MR 1993238
[20] Luo, M. X., Liu, B.: Robustness of interval-valued fuzzy inference triple I algorithms based on normalized Minkowski distance. J. Log. Algebr. Methods 86 (2017), 298-307. DOI 10.1016/j.jlamp.2016.09.006 | MR 3575372
[21] Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121. DOI 10.1109/tfuzz.2007.896304
[22] Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishes, Boston, Dordrecht 1999. DOI 10.1007/978-1-4615-5217-8 | MR 1733839 | Zbl 0940.03028
[23] Pang, L. M., Tay, K. M., Lim, C. P.: Monotone fuzzy rule relabeling for the zero-order TSK fuzzy inference system. IEEE Trans. Fuzzy Syst. 24 (2016), 1455-1463. DOI 10.1109/tfuzz.2016.2540059
[24] Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press/Francis and Taylor, Boca Raton 2013.
[25] Pedrycz, W.: From fuzzy data analysis and fuzzy regression to granular fuzzy data analysis. Fuzzy Set Syst. 274 (2015), 12-17. DOI 10.1201/9781315216737 | MR 3355341
[26] Pedrycz, W., Wang, X. M.: Designing fuzzy sets with the use of the parametric principle of justifiable granularity. IEEE Trans. Fuzzy Syst. 24 (2016), 489-496. DOI 10.1109/tfuzz.2015.2453393
[27] Pei, D. W.: $R_{0}$ implication: characteristics and applications. Fuzzy Set Syst. 131 (2002), 297-302. DOI 10.1016/s0165-0114(02)00053-2 | MR 1939842
[28] Pei, D. W.: Unified full implication algorithms of fuzzy reasoning. Inform. Sci. 178 (2008), 520-530. DOI 10.1016/j.ins.2007.09.003 | MR 2363234
[29] Rosenfeld, A.: Distances between fuzzy sets. Pattern Recogn. Lett. 3 (1985), 229-233. DOI 10.1016/0167-8655(85)90002-9
[30] Sarkoci, P., Šabo, M.: Information boundedness principle in fuzzy inference process. Kybernetika 38 (2002), 327-338. MR 1944313
[31] Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Set Syst. 118 (2001), 467-477. DOI 10.1016/s0165-0114(98)00402-3 | MR 1809394 | Zbl 1045.94007
[32] Tang, Y. M.: Differently implicational hierarchical inference algorithm under interval-valued fuzzy environment. In: Proc. 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2015), Istanbul, pp. 1-8. DOI 10.1109/fuzz-ieee.2015.7337944 | MR 3324890
[33] Tang, Y. M., Liu, X. P.: Differently implicational universal triple I method of (1, 2, 2) type. Comput. Math. Appl. 59 (2010), 1965-1984. DOI 10.1016/j.camwa.2009.11.016 | MR 2595972
[34] Tang, Y. M., Ren, F. J.: Universal triple I method for fuzzy reasoning and fuzzy controller. Iran. J. Fuzzy Syst. 10 (2013), 1-24. DOI 10.1109/fskd.2013.6816179 | MR 3154637
[35] Tang, Y. M., Ren, F. J.: Variable differently implicational algorithm of fuzzy inference. J. Intell. Fuzzy Syst. 28 (2015), 1885-1897. DOI 10.3233/IFS-141476 | MR 3324890
[36] Tang, Y. M., Ren, F. J.: Fuzzy systems based on universal triple I method and their response functions. Int. J. Inf. Tech. Decis. 16 (2017), 443-471. DOI 10.1142/s0219622014500746
[37] Tang, Y. M., Ren, F. J., Chen, Y. X.: Differently implicational $\alpha$-universal triple I restriction method of (1, 2, 2) type. J. Syst. Eng. Electron. 23 (2012), 560-573. DOI 10.1109/jsee.2012.00070
[38] Tang, Y. M., Yang, X. Z.: Symmetric implicational method of fuzzy reasoning. Int. J. Approx. Reason. 54 (2013), 1034-1048. DOI 10.1016/j.ijar.2013.04.012 | MR 3081298
[39] Tang, Y. M., Yang, X. Z., Yue, F.: Universal triple I method with maximum fuzzy entropy employing R-implications. In: Proc. the 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2013), pp. 125-129. DOI 10.1109/fskd.2013.6816179
[40] Wang, L. X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs, NJ, 1997.
[41] Wang, G. J.: On the logic foundation of fuzzy reasoning. Inform. Sci. 117 (1999), 47-88. DOI 10.1016/s0020-0255(98)10103-2 | MR 1705095
[42] Wang, G. J., Fu, L.: Unified forms of triple I method. Comput. Math. Appl. 49 (2005), 923-932. DOI 10.1016/j.camwa.2004.01.019 | MR 2135223
[43] Wang, G. J., Zhou, H. J.: Introduction to Mathematical Logic and Resolution Principle. Co-published by Science Press and Alpha International Science Ltd., 2009.
[44] Yang, X. Y., Yu, F. S., Pedrycz, W.: Long-term forecasting of time series based on linear fuzzy information granules and fuzzy inference system. Int. J. Approx. Reasoning 81 (2017), 1-27. DOI 10.1016/j.ijar.2016.10.010 | MR 3589730
[45] Zadeh, L. A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cyber. 3 (1973), 28-44. DOI 10.1109/tsmc.1973.5408575 | MR 0309582
Partner of
EuDML logo