[4] Behrends, S.: Geometric and Algebraic Approaches to Mixed-Integer Polynomial Optimization Using Sos Programming. PhD Thesis, Universität Göttingen 2017.
[5] Behrends, S., Hübner, R., Schöbel, A.:
Norm bounds and underestimators for unconstrained polynomial integer minimization. Math. Methods Oper. Res. 87 (2018), 73-107.
DOI 10.1007/s00186-017-0608-y |
MR 3749410
[8] Chen, Y., Dias, L. R. G., Takeuchi, K., Tibar, M.:
Invertible polynomial mappings via Newton non-degeneracy. Ann. Inst. Fourier 64 (2014), 1807-1822.
DOI 10.5802/aif.2897 |
MR 3330924
[9] Din, M. S. El:
Computing the global optimum of a multivariate polynomial over the reals. In: Proc. Twenty-first international symposium on Symbolic and algebraic computation 2008, pp. 71-78.
DOI 10.1145/1390768.1390781 |
MR 2500375
[11] Greuet, A., Din, M. Safey El:
Deciding reachability of the infimum of a multivariate polynomial. In: Proc. 36th international symposium on Symbolic and algebraic computation 2011, pp. 131-138.
DOI 10.1145/1993886.1993910 |
MR 2895204
[12] Greuet, A., Din, M. Safey El:
Probabilistic algorithm for polynomial optimization over a real algebraic set. SIAM J. Optim. 24 (2014), 1313-1343.
DOI 10.1137/130931308 |
MR 3248043
[13] Krasiński, T.:
On the Łojasiewicz exponent at infinity of polynomial mappings. Acta Math. Vietnam 32 (2007), 189-203.
MR 2368007
[15] Marshall, M.:
Positive polynomials and sums of squares. Amer. Math. Soc. (2008), 3-19.
MR 2383959
[18] Schweighofer, M.:
Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17 (2006), 920-942.
DOI 10.1137/050647098 |
MR 2257216
[19] Vui, H. H., Pham, T. S.:
Minimizing polynomial functions. Acta Math. Vietnam. 32 (2007), 71-82.
MR 2348981
[20] Vui, H. H., Pham, T. S.:
Representations of positive polynomials and optimization on noncompact semialgebraic sets. SIAM J. Optim. 20 (2010), 3082-3103.
DOI 10.1137/090772903 |
MR 2735945