Previous |  Up |  Next

Article

Keywords:
main supergraph; Suzuki group
Summary:
Let $G$ be a finite group. The main supergraph $\mathcal{S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong Sz(q)$ if and only if $\mathcal{S}(G)\cong \mathcal{S}(Sz(q))$, where $q=2^{2m+1}\ge 8$.
References:
[1] Alavi, H., Daneshkhah, A., Parvizi, H.: Groups of the same type as Suzuki groups. Int. J. Group Theory 8 (1) (2019), 35–42. MR 3953262
[2] Chen, G.Y.: On Frobenius and $2$-Frobenius group. J. Southwest China Normal Univ. 20 (1995), 485–487, in Chinese.
[3] Glauberman, G.: Factorizations in local subgroups of finite groups. Regional Conference Series in Mathematics, no. 33, American Mathematical Society, Providence, R.I., 1977. MR 0470072
[4] Hamzeh, A., Ashrafi, A.R.: Automorphism groups of supergraphs of the power graph of a finite group. European J. Combin. 60 (2017), 82–88. DOI 10.1016/j.ejc.2016.09.005 | MR 3567537
[5] Iranmanesh, A., Parvizi, H., Tehranian, A.: Characterization of Suzuki group by NSE and order of group. Bull. Korean Math. Soc. 53 (3) (2016), 651–656. DOI 10.4134/BKMS.b140564 | MR 3508660
[6] Khalili, A., Salehi, S.S.: Some results on the main supergraph of finite groups. Accepted in Algebra Discrete Math.
[7] Khalili, A., Salehi, S.S.: Some alternating and symmetric groups and related graphs. Beitr. Algebra Geom. 59 (2018), 21–24. DOI 10.1007/s13366-017-0360-8 | MR 3761396
[8] Khalili, A., Salehi, S.S.: The small Ree group $^{2}G_{2}(3^{2n+1})$ and related graph. Comment. Math. Univ. Carolin. 59 (3) (2018), 271–276. MR 3861551
[9] Mazurov, V.D., Khukhro, E.I.: Unsolved problems in group theory. The Kourovka Notebook, (English version), ArXiv e-prints, (18), January 2014. Available at http://arxiv.org/abs/1401.0300v6 MR 3408705
[10] Salehi, S.S., Khalili, A.: Recognition of $L_{2}(q)$ by the main supergraph. Accepted in Iran. J. Math. Sci. Inform.
[11] Shi, W.J.: A characterization of Suzuki’s simple groups. Proc. Amer. Math. Soc. 114 (3) (1992), 589–591. DOI 10.1090/S0002-9939-1992-1074758-0 | MR 1074758
[12] Williams, J.S.: Prime graph components of finite groups. J. Algebra 69 (2) (1981), 487–513. DOI 10.1016/0021-8693(81)90218-0 | MR 0617092 | Zbl 0471.20013
Partner of
EuDML logo