[1] Ahn, S. J., Rauh, W., Warnecke, H.-J.: 
Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recognition 34 (2001), 2283-2303. 
DOI 10.1016/S0031-3203(00)00152-7 | 
Zbl 0991.68127[2] Akinlar, C., Topal, C.: 
EDCircles: A real-time circle detector with a false detection control. Pattern Recognition 46 (2013), 725-740. 
DOI 10.1016/j.patcog.2012.09.020[6] Grbić, R., Grahovac, D., Scitovski, R.: 
A method for solving the multiple ellipses detection problem. Pattern Recognition 60 (2016), 824-834. 
DOI 10.1016/j.patcog.2016.06.031[9] Kogan, J.: 
Introduction to Clustering Large and High-Dimensional Data. Cambridge University Press, Cambridge (2007). 
MR 2297007 | 
Zbl 1183.62106[11] Morales-Esteban, A., Martínez-Álvarez, F., Scitovski, S., Scitovski, R.: 
A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning. Computers & Geosciences 73 (2014), 132-141. 
DOI 10.1016/j.cageo.2014.09.003[12] Moshtaghi, M., Havens, T. C., Bezdek, J. C., Park, L., Leckie, C., Rajasegarar, S., Keller, J. M., Palaniswami, M.: 
Clustering ellipses for anomaly detection. Pattern Recognition 44 (2011), 55-69. 
DOI 10.1016/j.patcog.2010.07.024 | 
Zbl 1207.68301[14] Prasad, D. K., Leung, M. K. H., Quek, C.: 
ElliFit: an unconstrained, non-iterative, least squares based geometric ellipse fitting method. Pattern Recognition 46 (2013), 1449-1465. 
DOI 10.1016/j.patcog.2012.11.007 | 
Zbl 1264.68205[17] Scitovski, R.: 
A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set. J. Glob. Optim. 68 (2017), 713-727. 
DOI 10.1007/s10898-017-0510-4 | 
MR 3671698 | 
Zbl 1377.65067[18] Scitovski, R., Marošević, T.: 
Multiple circle detection based on center-based clustering. Pattern Recognit. Lett. 52 (2014), 9-16. 
DOI 10.1016/j.patrec.2014.09.010[19] Scitovski, R., Sabo, K.: 
Application of the DIRECT algorithm to searching for an optimal $k$-partition of the set $\Cal A\subset\Bbb R^n$ and its application to the multiple circle detection problem. J. Glob. Optim. 74 (2019), 63-77. 
DOI 10.1007/s10898-019-00743-8 | 
MR 3943615 | 
Zbl 07069294[20] Scitovski, R., Scitovski, S.: 
A fast partitioning algorithm and its application to earthquake investigation. Comput. Geosci. 59 (2013), 124-131. 
DOI 10.1016/j.cageo.2013.06.010[21] Späth, H.: 
Cluster-Formation und -Analyse. Theorie, FORTRAN-Programme und Beispiele. R. Oldenbourg Verlag, München (1983). 
Zbl 0536.62048