[3] Greene, R.E., Wu, H.:
Function theory on manifolds which possesses a pole. Lecture Notes in Math., vol. 699, Springer-Verlag, Berlin and New York, 1979.
DOI 10.1007/BFb0063413 |
MR 0521983
[4] Grigoryan, A.A.:
On the existence of a Green function on a manifold. Uspekhi Mat. Nauk 38 (1983), 161–162, (Russian), English translation: Russian Math. Surveys 38 (1983), no. 1, 190–191.
MR 0693728
[6] Grigoryan, A.A.:
Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36 (2) (1999), 135–249.
DOI 10.1090/S0273-0979-99-00776-4 |
MR 1659871
[8] Jost, J.:
Riemannian geometry and geometric analysis. Springer, Berlin, 2017.
MR 3726907
[9] Karp, L.: Subharmonic functions, harmonic mappings and isometric immersions. Seminar on Differential Geometry (Yau, S.T., ed.), Ann. Math. Stud. 102, Princeton, 1982.
[12] Li, P.:
On the structure of complete Kähler manifolds with nonnegative curvature near infinity. Invent. Math. 99 (1990), 579–600.
DOI 10.1007/BF01234432 |
MR 1032881
[13] Li, P.: Curvature and function theory on Riemannian manifolds. Surveys in Differential Geometry, vol. 7, International Press, Cambridge, 2002, Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer, pp. 375–432.
[15] Rigolli, M., Setti, A.:
Liouville type theorems for $\phi $ subharmonic functions. Rev. Mat. Iberoamerican 17 (2001), 471–521.
DOI 10.4171/RMI/302 |
MR 1900893
[16] Ruppenthal, J.:
Parabolicity of the regular locus of complex varieties. Proc. Amer. Math. Soc. 144 (2016), 225–233.
DOI 10.1090/proc12718 |
MR 3415591
[17] Sampson, J.H.:
Applications to harmonic maps to Kähler geometry. Complex differential geometry and nonlinear differential equation, Amer. Math. Soc., Providence, RI, Contemp. Math. ed., 1986.
MR 0833809
[18] Siu, Y.T.:
The complex-analyticity of harmonic maps and the strong rigidity of compact Kähler manifold. Ann. of Math. (2) 112 (1) (1980), 73–111.
DOI 10.2307/1971321 |
MR 0584075
[20] Varopoulos, N.Th.:
Potential theory and diffusion of Riemannian manifolds. Conference on Harmonic Analysis in honor of Antoni Zygmund, vol. I, II, Wadsworth Math. Ser., Wadsworth, Belmont, Calif., 1983, pp. 821–837.
MR 0730112